
Daniel Dizdarevic

Symmetries and Symmetrisation
in Quantum and Electromagnetic

Multi-Mode Systems for
Balancing Gain and Loss

Von der Fakultät Mathematik und Physik der Universität Stuttgart

zur Erlangung der Würde eines Doktors der Naturwissenschaften

(Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von Daniel Dizdarevic aus Göppingen

Hauptberichter Apl. Prof. Dr. Jörg Main

Institut für Theoretische Physik I

Universität Stuttgart

Mitberichter Apl. Prof. Dr. Johannes Roth

Institut für Funktionelle Materie und Quantentechnologien

Universität Stuttgart

Tag der mündlichen Prüfung: 31. Mai 2021

Institut fürTheoretische Physik I

2021



Daniel Dizdarevic

Symmetries and Symmetrisation in Quantum and Electromag-

netic Multi-Mode Systems for Balancing Gain and Loss

Dissertation, 2021

Hauptberichter: Apl. Prof. Dr. Jörg Main

Mitberichter: Apl. Prof. Dr. Johannes Roth

Universität Stuttgart

Institut für Theoretische Physik I

Pfaffenwaldring 57

70569 Stuttgart



I am the most incurably lazy devil that ever stood

in shoe leather – that is, when the fit is on me,

for I can be spry enough at times.

Sherlock Holmes

—A Study in Scarlet
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Abstract

Losses usually are an undesirable effect in physics. However,

in combination with gain, novel and unexpected features occur.

This is because gain and loss can effectively be described via an

imaginary potential, which renders a Hamiltonian non-Hermitian.

Although there are similarities to standard quantum mechanics,

non-Hermitian quantum mechanics exhibits unique mathematical

features like bi-orthogonal and self-orthogonal states. Such systems

can be used to describe open quantum systems efficiently; though,

the overall probability is not conserved in general. However, by

balancing gain and loss, stable stationary states with intriguing

properties can be realised.

Balanced gain and loss occurs in combination with anti-unitary

symmetries, which are related to time reversal. The simplest and

most powerful symmetry in this regard is 𝒫𝒯 symmetry, which

acted as the driving force behind the development of non-Hermi-

tian quantum mechanics in the last two decades. Researchers

produced some astounding results involving 𝒫𝒯 symmetry, like

unidirectionally invisible structures and optimal robust wireless

power transfer. Due to the generality of the 𝒫𝒯 operator, 𝒫𝒯

symmetry is applicable to almost any physical system, though, it

is broken even for small perturbations. In the absence of sym-

metries, balanced gain and loss can still be achieved by means

of symmetrisation or semi-symmetrisation, which are introduced

in this thesis. Symmetrised non-Hermitian systems show similar

features as symmetric ones, but they allow for a broader range of

applications. Symmetrisation allows for the description of physical

multi-well potentials with gain and loss. Yet, the lack of obvious

symmetries or recognisable patterns makes symmetrised systems

hard to understand intuitively.

The relations between symmetries and symmetrisation are dis-

cussed in detail and both concepts are explicitly applied to one-

dimensional multi-mode quantum systems, for which a simple mat-



rix model is used as an example. Analytical symmetrised solutions

are derived and it is explicitly demonstrated how symmetrisation

can be used to systematically find two-mode systems with a stable

stationary ground state. Further, it is shown that models with

just two modes are only semi-symmetrisable, whereas they can be

perfectly 𝒫𝒯-symmetric. Semi-symmetrisation is also applied to

multi-mode systems for the realisation of multi-mode chains and to

spatially extended Gaussian multi-well potentials. Gaussian poten-

tials can be used in experimental realisations with Bose–Einstein

condensates involving non-linear contact interactions; these can be

used to realise a self-stabilising mechanism of stationary states,

thus making the system robust with respect to small perturbations.

By deriving a mathematically equivalent model for inductively

coupled electric resonant circuits, the concepts of symmetries and

symmetrisation can be transferred from the quantum realm to the

classical field of electrodynamics. While this provides a simple and,

in particular, accessible platform for experiments, the possibility of

applications for wireless power transfer are also discussed briefly,

which concludes this thesis.



Inhaltsangabe in

deutscher Sprache

Verluste sind in der Physik häufig ein unerwünschter Nebeneffekt.

In Kombination mit Gewinn können jedoch neuartige und uner-

wartete Eigenschaften auftreten. Der Grund hierfür ist, dass sich

Gewinn und Verlust effektiv durch komplexe Potentiale beschrei-

ben lassen, durch die ein Hamilton-Operator nicht-Hermitesch

wird. Obwohl es Gemeinsamkeiten zum üblichen Formalismus der

Quantenmechanik gibt, treten einzigartige mathematische Eigen-

schaften in der nicht-Hermiteschen Quantenmechanik auf, wie etwa

biorthogonale und selbstorthogonale Zustände. Solche Systeme

lassen sich zur effizienten Beschreibung offener Quantensysteme

verwenden. Jedoch ist die Gesamtwahrscheinlichkeit hierbei im

Allgemeinen nicht erhalten. Gleichen sich Gewinn und Verlust aus,

so lassen sich aber stabile stationäre Zustände mit verblüffenden

Eigenschaften erzeugen.

Ausgeglichener Gewinn und Verlust tritt im Zusammenhang mit

antiunitären Symmetrien auf, die wiederum mit Zeitumkehr zusam-

menhängen. Die einfachste und zugleich einflussreichste Symmetrie

in dieser Hinsicht ist die 𝒫𝒯-Symmetrie, welche in den letzten zwei

Jahrzehnten als treibende Kraft hinter der Entwicklung der nicht-

Hermiteschen Quantenmechanik fungierte. Forscherinnen und

Forscher haben einige erstaunliche Ergebnisse im Zusammenhang

mit 𝒫𝒯-Symmetrie erzielt, zu denen unter anderem unidirektional

unsichtbare Strukturen und optimale und zugleich stabile, kabello-

se Energieübertragungen zählen. Aufgrund der Allgemeingültigkeit

des 𝒫𝒯-Operators lässt sich 𝒫𝒯-Symmetrie auf nahezu jedes phy-

sikalische System anwenden; jedoch kann die Symmetrie bereits

durch kleine Störungen gebrochen werden. Ohne Symmetrien las-

sen sich mithilfe von Symmetrisierung oder Semisymmetrisierung,

zwei Konzepte, die in dieser Arbeit eingeführt werden, dennoch

ausgeglichene Gewinne und Verluste erzeugen. Symmetrisierte,



nicht-Hermitesche Systeme weisen ähnliche Eigenschaften auf

wie die symmetrischen, erlauben jedoch eine Vielzahl zusätzlicher

Anwendungsmöglichkeiten. Mithilfe von Symmetrisierung lassen

sich auch physikalische Mehrmuldenpotentiale mit Gewinnen und

Verlusten beschreiben. Dennoch können symmetrisierte Systeme

aufgrund des Fehlens erkennbarer Symmetrien und Muster nur

schwer intuitiv gedeutet oder nachvollzogen werden.

Die Beziehung zwischen Symmetrien und Symmetrisierung wird

im Detail besprochen und beide Konzepte werden explizit auf

eindimensionale Mehrmuldenquantensysteme angewandt, die ex-

emplarisch durch ein einfaches Matrixmodell beschrieben werden.

Es werden analytische Lösungen für symmetrisierte Systeme her-

geleitet und im Detail gezeigt, wie Symmetrisierung dazu genutzt

werden kann, Zweimodensysteme mit einem stabilen stationären

Grundzustand zu finden. Darüber hinaus wird gezeigt, dass Modelle

mit nur zwei Moden nur semisymmetrisierbar sind, wohingegen

diese problemlos 𝒫𝒯-symmetrisch sein können. Semisymmetri-

sierung wird außerdem auf Mehrmodensysteme zur Realisierung

von Transportketten und auf räumlich ausgedehnte, Gauß-förmige

Mehrmuldenpotentiale angewandt. Gauß-förmige Potentiale lassen

sich für experimentelle Realisierungen mit Bose–Einstein-Konden-

saten verwenden, welche nichtlineare Kontaktwechselwirkungen

aufweisen. Diese Wechselwirkungen können für die Erzeugung

eines Selbststabilisierungsmechanismus stabiler Zustände genutzt

werden, wodurch das System stabil gegenüber kleinen Störungen

wird.

Da sich ein mathematisch äquivalentes Modell für induktiv ge-

koppelte, elektrische Schwingkreise finden lässt, können Konzepte

über Symmetrien und Symmetrisierung von der Quantenebene

auf die klassische Theorie der Elektrodynamik übertragen werden.

Obwohl das bereits einen einfachen und insbesondere einfach

zugänglichen Aufbau für Experimente liefert, wird auch die Mög-

lichkeit einer Anwendung für kabellose Energieübertragungen kurz

diskutiert, um diese Arbeit damit abzuschließen.
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1
This also holds for ir-

reversible processes,

since time reversal,

being just a theoret-

ical concept, also af-

fects the second law

of thermodynamics.

Figure 1-1: Gain, loss

Introduction 1
Come, Watson, come! The game is afoot.

Sherlock Holmes

—The Adventure of the Abbey Grange

Losses of any sort usually are an unwanted but common effect in

physics. They lead to undesirable properties of physical systems,

which do no longer follow certain conservation laws. The dissip-

ation of energy due to friction is a common example of a mostly

undesirable loss of energy in mechanical systems. Another example

is the attenuation of light in optical media due to absorption and

scattering, which lead to a loss of light intensity and provide a

limiting factor in modern signal transmission techniques.

In theory, though, such issues can simply be resolved: On time

reversal, loss becomes gain and the evolution of a physical system is

completely reversed.
1
By connecting a system to its time-reversed

copy, the amount of loss is balanced by an equal amount of gain,

which restores the conservation of the energy, for example. Of

course, this argumentation also works vice versa, meaning that an

undesirable gain, like electromagnetic interference in electronic

devices, for example, can also be balanced by an equal amount of

loss via a time-reversed copy of the system.

Balanced gain and loss appears to be a simple concept at a first

glance and— literally—means that gain and loss of some quantity

are balanced in such a way that the overall amount of the quantity

does not change. This statement is simple and simultaneously so

general that it holds everywhere, in principle. To give an explicit

example, which serves in a similar form as a motivation in Ref. [1],

a system consisting of cats and boxes seems like a reasonable

starting point. This is not only due to tradition— e.g. see Ref. [2]—

but also because cats show a natural affinity for boxes [3–5]. Any

box is thus expected to exhibit a natural gain of cats as shown in

1



2
The falling cat prob-

lem was studied al-

ready by James Clerk-

Maxwell [6] and is an

example of a non-ho-

lonomic system [7], in

contrast to the but-

tered toast phenome-

non [8], for example.

Fig. 1-1. Hence, the cat occupation of the box increases over time.

To safely decrease the cat occupation, one could move the box to

a higher position and cut a hole into its bottom. This leads to a

loss of cats due to gravity as shown in Fig. 1-1, until the box is

empty; this method can be considered to be safe, since the cats

will probably land on their feet
2
[7; 9–12].

Since suitable mechanisms for gain and loss of cats in boxes

were found, one may now couple them by allowing for an exchange

of cats between a box with cat gain and a box with cat loss. This

can be achieved by connecting the boxes via a tunnel as shown in

Fig. 1-2, i.e. the cats can now tunnel between the boxes. If the cat

distribution is characterised by |🐱⟩, then its changes can formally

be described by a model of the form

d

d𝑡
|🐱⟩ = 𝐵 |🐱⟩ ,(1-1)

where 𝐵 is a 2×2 matrix in which the diagonal and off-diagonal

elements characterise the individual boxes and their coupling,

respectively. Since there should occur repulsions if the cat density

per box is high enough, a cat tunnelling current flows from the

box with higher cat occupation to the box with lower cat occu-

pation. Without gain or loss, this would lead the cats to become

equally distributed over all boxes, which then corresponds to a cat

equilibrium.

Figure 1-2: Balanced
gain and loss

If gain and loss are balanced, i.e. the number of cats falling

into one box is equal to the number of cats falling out of the other

box per time, the overall number of cats in the boxes is conserved.

Further, if the cat occupations are equal, a steady current flows

from the box with gain to the box with loss. Although the cats are

in perpetual motion, the cat occupation of each box appears to be

constant under the assumption that the cats are indistinguishable;

hence, the corresponding cat state |🐱⟩ can be considered to be

stationary.

Although the model (1-1) shown in Fig. 1-2 was introduced in

a playful way, it encapsulates rather well the fundamental ideas

which underlie this thesis. The model (1-1) corresponds to a one-
dimensional, discrete two-mode system, which can be generalised

to 𝑛 modes by imagining 𝑛 adjacently-connected boxes. Such static,

2 Introduction



one-dimensional discrete systems occur in all fields of physics as

discussed in the course of this thesis, and can, in principle, also be

used to describe the dynamics of multi-dimensional lattices [13]. It

should not have been surprising to see that balanced gain and loss

of some quantity leads to a conservation, as there exist countless

examples from everyday life to support this; one of them being that

the amount of money a person owns does not change if income

and expenses are balanced. Moreover, an interesting connection

between gain, loss, and time reversal occurred, which, however,

is no coincidence. In general, there exists a connection between

the occurrence of stationary states and symmetries involving time

reversal. The symmetries in the example above are obvious:

— gain and loss are balanced,

— the occupations are equal,

— the current and the occupations are conserved, i.e. they are

symmetric in time.

However, there exist other systems with gain and loss, which—

although possessing no apparent symmetries— yield stationary

states as well. While gain and loss is also balanced, there exist

fundamental differences between a symmetric system as discussed

above, and such a symmetrised system. The discussion of concepts

for balancing gain and loss and their applications in different

physical systems is the foremost purpose of this thesis. Some more

detailed motivations can be found in Chapters 3 and 9.
This thesis is organised in several parts, starting quite general

and becoming more specialised with every chapter. First, Chapter 2
gives a rather general introduction to the concept of symmetries

in physics. It is shown how physical theories can, in principle,

be derived purely from symmetry considerations, which lays the

foundations for the two other parts. The detailed discussion of

time reversal in Section 2-3 a) is particularly important, as this

concept is more subtle than it appears at first sight and takes a

distinguished role among the symmetries in physics.

The first and major part of this thesis concerns quantum mech-

anics (QM) and introduces the reader to the idea of using non-

3



Hermitian operators, which leads to non-Hermitian quantum mech-

anics (NHQM). NHQM allows for an effective description of open

quantum systems, i.e. quantum systems with gain and loss, for

which different concepts of symmetry and symmetrisation to bal-

ance gain and loss are introduced. This involves discussions on

linear and non-linear, discrete and continuous quantum systems. A

brief overview of experimental methods to realise and investigate

the considered systems with Bose–Einstein condensates (BECs)

concludes the first part.

The second part of this thesis is much shorter and concerns

the application of the results of the first part in electrodynamics

(ED). In contrast to quantum systems, the considered models can

rather easily be realised via inductively coupled resonant circuits.

The derivation of the mathematically equivalent circuit model is of

particular interest and represents the majority of the second part.

Afterwards, the technical application of wireless power transfer

(WPT) is briefly considered to demonstrate the model calculations

with physical parameters.

In this theses different types of natural units are used, so that all

quantities are dimensionless if not otherwise stated. For example,

Planck units with ℏ = 𝑐 = 1 are used for relativistic considerations,

where the speed of light is the characteristic velocity. Such units

are independent of the type of system which is considered. In

contrast, in QM atomic units are useful, which are characterised

by ℏ = 𝑚 = 1, i.e. they are based specifically on systems with a

characteristic mass 𝑚. Sloppily speaking, in the following, all of

these quantities can be considered to be unity— “ℏ = 𝑐 = 𝑚 = 1”—

if they are not appearing explicitly. In addition, a rich variety of

notations is required and used throughout this thesis; some of

them are common and some of them are not. An overview and

summary of these notations can be found in Appendix A, which

may be convenient to read beforehand.

4 Introduction



Symmetry in physics 2
Symmetry is one of the most general and deep concepts in phys-

ics. Most of the theories in modern physics can be derived from

symmetry principles directly. What is a symmetry in the first place,

though?

Simply speaking, a symmetry occurs if a system is invariant

under a certain operation. Such symmetry operations can be simple

reflections or rotations. But in general, any mathematical operation

can be a symmetry operation, some of which are rather abstract as

shown in the course of this chapter. However, there are two differ-

ent types of symmetries: Continuous symmetries are invariances

with respect to infinitesimal operations. They are connected to con-

served quantities or, vice versa, any conserved quantity in physics

exists only because of a corresponding continuous symmetry, which

is discussed in Section 2-1 c). In contrast, discrete symmetries are

invariances with respect to finite operations like the flipping of

signs of specific quantities. Although discrete symmetries seem

to be much simpler at first sight, they involve some of the most

fundamental symmetries in our universe and are deeply connected

to the structure of quantum theory, as discussed in Sections 2-3
and 2-4.

At the end of this chapter, Section 2-5 introduces another and
rather unusual symmetry. Supersymmetry (SUSY) describes the

invariance of a theory under the exchange of bosons and fermions,

the two different fundamental types of particles. While SUSY is

known in the context of quantum field theories and the standard

model, the focus in Section 2-5 lies on the general formalism in the

context of QM, which forms the foundation of the discussions in

Chapter 5.

5



2-1 Symmetry in Euclidean spaces

In this section the basic terminology and concepts of symmetry are

introduced, starting with symmetry in Euclidean spaces. Most of

the advanced concepts, which are discussed in the next sections and

chapters, have simple analogues in the low-dimensional Euclidean

spaces. This is particularly helpful to develop a more intuitive and

clear understanding of the rather abstract mathematics behind

group theory, which is used for the description of symmetries. For

some more detailed introductions to the concepts of groups and

symmetry see also Refs. [14; 15].

120
∘

90
∘

d𝜑

Figure 2-1: Different
symmetric shapes

a) What is symmetry?

The term symmetry means that an object or a quantity is invariant

under certain transformations. For example, an equilateral triangle

is invariant under rotations of 120
∘
around its centre of mass as

shown in Fig. 2-1. If the corners are not labelled, then one does not
even notice that such a transformation was applied at all. Therefore,

the term invariance means that an object or a quantity is exactly

the same as before. A similar but weaker concept is covariance,

which means that only the shape of an object or quantity is the

same after a transformation.

For example, a circle of radius 𝑟 is defined by

𝑥
2
+𝑦

2
= 𝑟

2
,(2-1)

where all points (𝑥,𝑦) on the circle are given by

⎛⎜
⎝

𝑥

𝑦
⎞⎟
⎠
= ⎛⎜
⎝

𝑟cos𝜑

𝑟sin𝜑
⎞⎟
⎠
.

Obviously, a circle is invariant under rotations around its centre,

which are transformations of 𝜑 because Eq. (2-1) does not de-
pend on this parameter. However, a circle is merely covariant

under isotropic stretching, which is a transformation of 𝑟, as such

6 Symmetry in physics



For a moment,

nothing happened.

Then, after a second

or so, nothing con-

tinued to happen.

Douglas Adams

transformations preserve only the shape of Eq. (2-1), but not its
numerical value.

The rotational symmetry of a circle is an example of a continu-

ous symmetry: For all possible rotation angles d𝜑 ∈ [0, 2𝜋) the

circle looks the same. Moreover, the transformation parameter d𝜑

can be arbitrarily small and thus arbitrarily close to the identity

transformation, which does not alter the circle; in this case, the

identity transformation is a rotation with d𝜑 = 0. Apart from such

continuous symmetries there also exist discrete symmetries, in

which only a finite number of transformation parameters exist for

which the object appears unchanged.

Figure 2-1 shows that an equilateral triangle is invariant under

rotations with 𝜑 = 2𝜋/3 around its centre of mass. The same holds

for a rotation with 𝜑 = 4𝜋/3 and— trivially— for the rotation with

𝜑 = 0. However, the latter transformation is not really a symme-

try because there is no object that changes if “nothing” is done;

nevertheless the existence of such an identity transformations is

important for the mathematical treatment of symmetries as dis-

cussed in the following. Other objects also possess similar discrete

symmetries, like squares, which are symmetric with respect to

rotations of 𝜑𝑛 = 𝑛𝜋/2 for 𝑛 = 0,1, 2, 3.

b) Mathematical description of symmetry

In the previous section some examples for discrete and continuous

symmetries in the plane were shown. To describe such symmetries

mathematically, one must employ group theory and Lie theory.

A symmetry group (𝑆, ∘) of an object is a set of transformations 𝑆

under which the object is invariant. The symmetry transformations

then fulfil the group axioms with respect to the operation ∘:

— Closure: 𝑠1 ∘ 𝑠2 ∈ 𝑆 ∀ 𝑠1, 𝑠2 ∈ 𝑆,

— Associativity: 𝑠1 ∘ (𝑠2 ∘ 𝑠3) = (𝑠1 ∘ 𝑠2) ∘ 𝑠3 ∀ 𝑠1, 𝑠2, 𝑠3 ∈ 𝑆,

— Existence of an identity: 𝟙 ∘ 𝑠 = 𝑠 = 𝑠 ∘ 𝟙 ∀ 𝑠 ∈ 𝑆,

— Existence of an inverse: 𝑠 ∘ 𝑠
−1
= 𝟙 = 𝑠

−1
∘ 𝑠 ∀ 𝑠 ∈ 𝑆.

Symmetry in Euclidean spaces 7



The concept of symmetry groups is rather abstract but very power-

ful, since the properties of the group are independent of the objects

on which the transformations can act. Therefore, symmetries can be

studied separately and the knowledge can then be applied to whole

classes of different objects with the same or similar symmetries.

Group theory

As an example of the description of a symmetry via group theory,

one can consider all transformations 𝐯
′
= 𝒪(𝐯) under which the

Euclidean product

𝐯 ⋅ 𝐯 = 𝐯⊺𝐯(2-2)

is invariant. In the 𝑛-dimensional Euclidean space, transformations

are described by 𝑛×𝑛 matrices and one finds

(𝐯′)⊺𝐯′ = 𝐯⊺𝒪⊺𝒪𝐯
!
= 𝐯 ⋅ 𝐯 .

Transformation matrices which satisfy the condition

𝒪
⊺
𝒪 = 𝟙(2-3)

are called orthogonal and do not change the length of vectors,

i.e. the Euclidean product is invariant. The corresponding group is

therefore called the 𝑛-dimensional orthogonal group 𝑂(𝑛).

A

B
C

A

B

C
A

C

B

Figure 2-2: Trans-

formations between

congruent triangles

However, there are two different types of orthogonal transform-

ations. From Eq. (2-3) it follows that

det(𝒪
⊺
𝒪) = det𝒪

⊺
det𝒪 = det

2
𝒪 = det 𝟙 = 1 ,(2-4)

Therefore, there are either transformations with det𝒪 = 1, which

include only rotations, as they do not change the orientation of the

underlying coordinate system, or transformations with det𝒪 = −1,

which include also reflections. The two types of transformations

can be visualised by considering their actions on a geometric

shape as shown in Fig. 2-2 at the example of a triangle; although

both transformed triangles are congruent, their orientations are

different.

8 Symmetry in physics



Lie theory

For continuous symmetries— like the rotational symmetry of a

circle— the groups become Lie groups; they are not just groups,

but also differentiable manifolds. For Lie groups it is sufficient to

study infinitesimal transformations, i.e. transformations which are

arbitrarily close to the identity transformation. An infinitesimal

rotation d𝑅 can be expressed as

d𝑅 = 𝟙+
𝜑

𝑁
𝐺 (2-5)

with 𝑁 → ∞, where 𝜑 is a finite angle and 𝐺 is another matrix

called the generator. By applying the transformation (2-5) infinitely
many times, a finite rotation

𝑅(𝜑) = lim
𝑁→∞

(𝟙 +
𝜑

𝑁
𝐺)

𝑁
= e

𝐺𝜑 (2-6)

is obtained. Hence, 𝐺 “generates” the finite transformations. Since

one can obtain any finite transformations from infinitesimal ones,

the Lie groups “look the same everywhere” and it is sufficient to

study the structure in the vicinity of the identity. An important

generator known from QM is the Hamiltonian, which generates the

time evolution.

The generators of a Lie group form an algebra: The Lie algebra is

a vector space𝔖with a bilinear, anti-commutative, binary operation

[ , ] ∶ 𝔖×𝔖 → 𝔖 called the Lie bracket, which also satisfies the

Jacobi identity. The Lie bracket establishes the connection between

the combination of elements of the Lie group and the combination

of its generators via the Baker–Campbell–Hausdorff formula. An

important property of a Lie algebra is that there always exists

exactly one connected Lie group, which can be mapped to any of

the other Lie groups being generated by the algebra. A well-known

example of a Lie algebra is the angular momentum in QM. In this

case, the Lie bracket is just the commutator and the corresponding

Lie group describes rotations in three-dimensional space.

Symmetry in Euclidean spaces 9



1
The formal notation

𝜕𝜇𝜙 should indicate

that this calculation

is valid both in Euc-

lidean spaces and in

spacetime.

c) Noether’s theorem

A connection between generators of continuous symmetries and

conserved quantities—which are of utter importance to all physical

theories—was found by Emmy Noether in 1918: Every conserved

quantity is a generator of a symmetry group and vice versa.

To see this connection, one can consider a general Lagrangian
1

ℒ(𝜙,𝜕𝜇𝜙, 𝑡), where 𝜙 may be a generalised coordinate or even a

field. A physical symmetry is a transformation, say 𝜙 → 𝜙
′
(𝜙, 𝑠)

with a continuous parameter 𝑠 so that 𝜙
′
(𝜙, 0) = 𝜙, under which

the Lagrangian is invariant,

ℒ(𝜙
′
, 𝜕𝜇𝜙

′
, 𝑡) = ℒ(𝜙,𝜕𝜇𝜙, 𝑡) .

It follows that

d

d𝑠
ℒ(𝜙

′
, 𝜕𝜇𝜙

′
, 𝑡) =

𝜕ℒ

𝜕𝜙′
𝜕𝜙

′

𝜕𝑠
+

𝜕ℒ

𝜕(𝜕𝜇𝜙
′)

𝜕(𝜕𝜇𝜙
′
)

𝜕𝑠
= 0 .(2-7)

The Euler–Lagrange equations also have to be invariant under a

symmetry transformation, i.e.

𝜕ℒ

𝜕𝜙′
= 𝜕𝜇

⎛⎜

⎝

𝜕ℒ

𝜕(𝜕𝜇𝜙
′)

⎞⎟

⎠
.

Then, Eq. (2-7) can be written as

𝜕𝜇
⎛⎜

⎝

𝜕ℒ

𝜕(𝜕𝜇𝜙
′)

𝜕𝜙
′

𝜕𝑠
⎞⎟

⎠
≡ 𝜕𝜇𝐽

𝜇
= 0 .(2-8)

One immediately sees that a physical symmetry leads to a con-

served quantity 𝐽
𝜇
, which can in general be called Noether current;

Eq. (2-8) can thus be understood as a continuity equation.

Examples of conserved quantities in physics are plentiful. As for

the example mentioned above: The Hamiltonian is the generator of

time evolutions, i.e. translations in time. The conserved quantity

related to time translations via Noether’s theorem is the energy.

10 Symmetry in physics



2
i.e. non-accelerated

Representation theory

Since groups describe symmetry transformations in an abstract

manner, they can act on all sorts of objects, which can be described

via representations. A representation of a group is a mapping of

the abstract group elements to a linear transformation acting on

some vector space. This allows, for example, to apply the group

𝑂(2), which is defined in the two-dimensional Euclidean space ℝ
2
,

to the three-dimensional Euclidean space ℝ
3
, by finding the three-

dimensional representations of its elements.

This short definition of representations should suffice for further

purpose in this thesis. Although a thoroughful discussion of group

theory, Lie theory, and representation theory would certainly be

impossible to give in this scope, it would also distract the focus from

the physical concepts which emerge as a result of the application

of these mathematical tools. Therefore, the next section will give

a short overview of how physical theories emerge naturally from

simple assumptions about symmetry.

2-2 Physics from symmetry

In this section some of the most important concepts of physics are

introduced and motivated from a symmetry perspective. Ref. [15]

gives a thoroughful introduction and a detailed discussion on this

subject and most of the following discussions represent selected

summaries of topics discussed there.

a) The Lorentz group

One of the most fundamental symmetry groups in physics is the

Lorentz group— the symmetry group of spacetime itself. This

follows from the two basic assumptions that in all inertial
2
frames

of reference

1) the laws of physics are the same (covariance),

Physics from symmetry 11



Nothing travels

faster than the

speed of light, with

the possible excep-

tion of bad news,

which obeys its

own special laws.

Douglas Adams

3
This is in fact the

picture that brought

Einstein to his conclu-

sions [17].

4
Reminder: 𝑐 = 1

2) the vacuum velocity of light is the same (invariance).

These principles of relativity are the postulates Albert Einstein

used in Ref. [16] to lay the foundations of relativity theory.

While the first assumption is relatively easy to accept, as it

reflects everyday experiences, the second assumption seems rather

odd. This is because life experience gives us an intuitive under-

standing of the Newtonian world, in which objects are moving at

different velocities, the perception of which depends on the frame

of reference. However, according to the laws of ED, the velocity

at which light moves is independent of the frame of reference, so

that it is not possible for a massive observer to travel alongside a

beam of light and see it “frozen”.
3
This contradicts our everyday

experiences completely and leads to some absurd-looking phenom-

ena, which are results of the fact that the perception of distances

in space and in time depend on the frame of reference, i.e. they are

relative instead of absolute.

However, by combining them into distances in four-dimensional

spacetime,
4

𝑠
2
= 𝑡

2
−𝑥

2
−𝑦

2
−𝑧

2
,(2-9)

one finds that this expression is the same in all frames of reference.

Equation (2-9) is the inner product of spacetime and can be written

as

𝑠
2
= 𝑥𝜇𝜂

𝜇𝜈
𝑥𝜈 ,(2-10)

where the Greek indices refer to four-vectors governed by Einstein’s

sum convention and

𝜂 =

⎛⎜⎜⎜⎜⎜⎜⎜

⎝

1

−1

−1

−1

⎞⎟⎟⎟⎟⎟⎟⎟

⎠

is the metric of spacetime ℝ
(1,3)

. This definition is completely

analogous to the Euclidean product (2-2), for which the metric is

just the identity 𝟙. However, in contrast to Euclidean products the

12 Symmetry in physics



5
i.e. it is indefinite

6
cf. the definition of

the orthogonal group

in Euclidean spaces:

𝒪
⊺
𝟙𝒪 = 𝟙

Table 2-1: The four

different components

of the Lorentz group

det𝛬 𝛬
0
0 Op.

> 0 > 0 𝟙

< 0 > 0 𝒫

< 0 < 0 𝒞𝒯

> 0 < 0 𝒞𝒫𝒯

spacetime product (2-10) can also take negative values,
5
which

describes distances of points in spacetime not being connected

causally; that is, starting from one point, one would have to travel

faster than light to reach the other point.

The transformations

(𝑥
′
)
𝜇
= 𝛬

𝜈
𝜇𝑥𝜈 ,

under which Eq. (2-10) is invariant, are defined by the condition

𝛬
⊺
𝜂𝛬

!
= 𝜂 . (2-11)

These are the Lorentz transformations, i.e. transformations between

inertial systems. The Lorentz transformations are symmetries of

spacetime. Their corresponding symmetry group is the Lorentz

group
6
𝑂(1,3). As in Euclidean spaces, there are two types of

Lorentz transformations with

(det𝛬)
2
= 1 ,

which follows from the definition (2-11) directly. As discussed in

Section 2-1 b), the transformations with det𝛬 = 1 preserve the

orientation of spacetime, while the transformations with det𝛬 = −1

do not.

In contrast to Euclidean spaces, however, the time component

plays a special role in the Lorentz group. Equation (2-11) yields

𝛬
0
0 = ±√1+∑

𝑛

(𝛬𝑛
0
)
2
, (2-12)

where 𝑛 runs over the spatial components. Because of

(𝑥
′
)
0
= 𝑡

′
= 𝛬

0
0𝑡 +∑

𝑛

𝛬
𝑛
0𝑥𝑛 ,

Eq. (2-12) determines the direction of time in the Lorentz trans-

formation: For 𝛬
0
0 > 0, time is transformed “forwards”, while

transformations with 𝛬
0
0 < 0 include time reversal. With this know-

ledge one can further conclude that transformations with det𝛬 < 0

and 𝛬
0
0 ≶ 0 include either only temporal or spatial reflections.
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7
The pure time-rever-

sal operator 𝒯 can-

not be expressed as

a Lorentz transforma-

tion per se, cf. Sec-

tion 2-3 a).

8
Note that the parity

operator is also the

metric of spacetime.

9
cf. Section 2-3 b)

10
The identity trans-

formation preserves

both the orientation

of the coordinate sys-

tem and the direc-

tion of time. There-

fore, only such trans-

formations can form

a proper subgroup.

11
cf. Eq. (2-6)

It is useful to assign operators to these fundamental physical

transformations:

— The parity operator 𝒫 generates spatial inversions.

— The “time-reversal”
7
operator 𝒞𝒯 generates temporal inver-

sions.

While these operations are defined abstractly, their representations

in four-dimensional spacetime read
8

𝒫 =

⎛⎜⎜⎜⎜⎜⎜⎜

⎝

1

−1

−1

−1

⎞⎟⎟⎟⎟⎟⎟⎟

⎠

, 𝒞𝒯 =

⎛⎜⎜⎜⎜⎜⎜⎜

⎝

−1

1

1

1

⎞⎟⎟⎟⎟⎟⎟⎟

⎠

.

One also finds that there are transformations which invert time

while preserving the orientation of spacetime as a whole. Such

transformations are spacetime reflections and can be expressed

with the operator 𝒞𝒫𝒯.
9

In conclusion, the Lorentz group consists of four components

which are summarised in Table 2-1. Each component can be ob-

tained by applying the corresponding operator onto the proper

Lorentz group
10

with det𝛬 > 0 and 𝛬
0
0 > 0. Because of this, the

four components are disconnected, i.e. elements from different

components cannot be transformed continuously into one another.

Generators

The Lorentz group possesses six symmetry generators,
11

which

describe the possible transformations between inertial systems:

1) Spatial rotations can be described by

𝛬R(𝜑) =
⎛⎜
⎝

1

𝑅𝑚(𝜑)
⎞⎟
⎠
,

where𝑅𝑚(𝜑) are the three-dimensional Euclidean rotation matri-

ces forming the special orthogonal group 𝑆𝑂(3). Since rotations

in space are continuous, they can be generated by the three-
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12
Note the additional

imaginary unit in the

exponential function,

which is a common

convention.

dimensional matrices
12
𝐽
(3)
𝑚 ,

𝑅𝑚(𝜑) = e
i𝐽(3)𝑚 𝜑

,

which satisfy the relations

(𝐽
(3)
𝑚 )

⊺
+𝐽

(3)
𝑚 = 0 ,

tr 𝐽
(3)
𝑚 = 0

following from Eqs. (2-3) and (2-4). Hence, the generators of
rotations in spacetime read

𝐽𝑚 =
⎛⎜
⎝

0

𝐽
(3)
𝑚

⎞⎟
⎠
.

2) Boosts essentially are translations of four-momentum in space-

time. Such transformations are also continuous and can thus be

written as

𝛬B = e
i𝐾𝑚𝜃 = lim

𝑁→∞
𝜆
𝑁
B ,

where 𝜆B = 𝟙 + 𝜖𝐾𝑚 with |𝜖| = |i𝜃/𝑁| ≪ 1 are infinitesimal

transformations generated by the matrices 𝐾𝑚. With Eq. (2-11)
one finds that the generators 𝐾𝜇 of boosts must satisfy

𝐾
⊺
𝑚𝜂 + 𝜂𝐾𝑚 = 0 (2-13)

in the first order of 𝜖.

With these generators the Lorentz transformations can in gen-

eral be written as

𝛬 = 𝛬R𝛬B = e
i(𝐉⋅𝛗+𝐊⋅𝛉)

with 𝐉 = (𝐽1, 𝐽2, 𝐽3)
⊺
and 𝐊 = (𝐾1,𝐾2,𝐾3)

⊺
satisfying

[𝐽𝑘, 𝐽𝑙] = i𝜖𝑘𝑙𝑚𝐽𝑚 ,

[𝐽𝑘,𝐾𝑙] = i𝜖𝑘𝑙𝑚𝐾𝑚 , (2-14)
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13
𝑗 can be obtained

from the eigenvalues

of the Casimir op-

erator in this basis;

an example being the

squared angular mo-

mentum operator.

[𝐾𝑘,𝐾𝑙] = −i𝜖𝑘𝑙𝑚𝐽𝑚 ,(2-15)

where the commutator is defined by [𝐴,𝐵] = 𝐴𝐵−𝐵𝐴. Equation

(2-14) shows that the commutators of rotations and boosts do not

commutate. Moreover, because of Eq. (2-15) the boost generators
are not even closed on themselves. Therefore, it is useful to define

new generators

𝑁
±
𝑘 =

1

2
(𝐽𝑘 ± i𝐾𝑘)

satisfying

[𝑁
±
𝑘 ,𝑁

±
𝑙 ] = i𝜖𝑘𝑙𝑚𝑁

±
𝑚 ,(2-16)

[𝑁
+
𝑘 ,𝑁

−
𝑙 ] = 0(2-17)

which are closed because of Eq. (2-17). Each of these generators

corresponds to an 𝑆𝑈(2) algebra defined by Eq. (2-16), respectively.
The generators for the remaining components of the Lorentz group

can be obtained by applying the corresponding operator from Table

2-1,

𝒫𝑁
±
𝑘 =𝑁

∓
𝑘 ,

𝒞𝒯𝑁
±
𝑘 =𝑁

∓
𝑘 ,

𝒞𝒫𝒯𝑁
±
𝑘 =𝑁

±
𝑘 .(2-18)

The 𝑆𝑈(2) algebra is best known from QM because 𝑆𝑈(2) is

the group of unitary 2×2 matrices with unit determinants describ-

ing rotations in ℂ
2
. By choosing a distinguished direction, the

eigenvectors of the corresponding generators form a (2𝑗 + 1)-di-

mensional basis
13

with eigenvalues {−𝑗,… , 𝑗}; this is possible only

if 𝑗 is either an integer or a half-integer. Hence, the 𝑆𝑈(2) algebra

is suitable to describe the properties of spin and is therefore also

called spin or angular momentum algebra.

However, as discussed in Section 2-1 b), a group can be rep-

resented in various ways depending on the objects on which the

group acts. The two lowest-dimensional representations are used

in Section 2-2 b) to show how some of the fundamental theories in

physics arise:
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14
or more precisely,

the representations

of the covering group

of the Lorentz group

1) For 𝑗 = 0 a one-dimensional representation is obtained, i.e. the

vector space on which the group acts is one-dimensional. In this

case, all generators must be zero to satisfy Eq. (2-16),

𝑁
±
𝑘 = 0 .

2) For 𝑗 = 1/2 a two-dimensional representation is obtained, i.e. the

vector space is two-dimensional in this case. This corresponds

to the usual description of spin 1/2 as discussed above with

|↑⟩ = ⎛⎜
⎝

1

0
⎞⎟
⎠
,

|↓⟩ = ⎛⎜
⎝

0

1
⎞⎟
⎠
.

In this case, the generators are given by the three Pauli matrices

𝜎1 =
⎛⎜
⎝

0 1

1 0
⎞⎟
⎠
, 𝜎2 =

⎛⎜
⎝

0 −i

i 0
⎞⎟
⎠
, 𝜎3 =

⎛⎜
⎝

1 0

0 −1
⎞⎟
⎠

(2-19)

via

𝑁
±
𝑘 =

𝜎k
2
. (2-20)

b) Representations of the Lorentz group

In Section 2-2 a) it was shown that the Lorentz group contains two

copies of the 𝑆𝑈(2) algebra. The 𝑆𝑈(2) algebra, on the other hand,

can act either on scalars or vectors. With these results the most

important representations of the Lorentz group
14

can be derived,

which will give rise to some of the most fundamental physical

theories. Since these representations stem from combinations

of the two copies of the 𝑆𝑈(2) algebra, they can be labelled by

(𝑗1, 𝑗2).
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The (0, 0) representation

The combination of the lowest-dimensional representations of𝑆𝑈(2)

yields the lowest-dimensional representation of the Lorentz group

with 𝑗1 = 𝑗2 = 0. The generators of the 𝑆𝑈(2) algebra are both

zero,𝑁
+
𝑘 =𝑁

−
𝑘 = 0. Hence, the corresponding transformations are

given by

𝛬 =∏

𝑘

e
i𝑁+

𝑘
𝜙+
𝑘 e

i𝑁−
𝑘 𝜙

−
𝑘 = 1

which act on Lorentz scalars. The (0, 0) representation is thus also

called scalar representation. Here, 𝜙𝑘 are the components of the

scalar field.

Using the non-interacting scalar Lagrangian

ℒ =
1

2
(𝜕𝜇𝜙𝜕

𝜇
𝜙−𝑚

2
)

and the Euler–Lagrange equations, one finds the Klein–Gordon

equation

(𝜕𝜇𝜕
𝜇
+𝑚

2
)𝜙 = 0(2-21)

that corresponds to the equations of motion for massive, non-

interacting bosons with spin 0. From Eq. (2-21) the Schrödinger
equation can be derived, which is shown in Section 2-2 c).

The (1/2, 0) and (0, 1/2) representations

If different representations of 𝑆𝑈(2) are combined, then either the

(1/2, 0) representation with

𝑁
+
𝑘 =

𝜎k
2
,

𝑁
−
𝑘 = 0

or the (0, 1/2) representation with

𝑁
+
𝑘 = 0 ,
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𝑁
−
𝑘 =

𝜎k
2

are obtained. One can show that𝑁
+
𝑘 and𝑁

−
𝑘 are exchanged under

a parity transformation [15]; hence, a parity transformation causes

a transition from the (1/2, 0) to the (0, 1/2) representation and vice

versa. The objects, on which the Lorentz transformations in these

representations act, possess two components and are called Weyl

spinors. The Weyl spinors of the (1/2, 0) representation are called

left-handed, while those of the (0, 1/2) representation are called

right-handed.

A parity-symmetric theory can be constructed by combining

both representations: The (1/2, 0) ⊕ (0, 1/2) representation acts

on the Dirac spinor field 𝜓, which contains both left-handed and

right-handed Weyl spinors. The corresponding Lorentz-invariant

Lagrangian reads

ℒ = 𝜓(i𝛾
𝜇
𝜕𝜇 −𝑚)𝜓 ,

where 𝜓 = 𝜓
†
𝛾0 with the 4×4 Dirac matrices 𝛾𝑘 satisfying the Dirac

algebra

{𝛾
𝜇
, 𝛾
𝜈
} = 2𝜂

𝜇𝜈
𝟙 .

By using the Euler–Lagrange equations, one obtains the Dirac

equation

(i𝛾
𝜇
𝜕𝜇 −𝑚)𝜓 = 0 (2-22)

that describes massive, non-interacting fermions with spin 1/2.

The (1/2, 1/2) representation

Finally, by combining the two-dimensional representations of 𝑆𝑈(2)

the (1/2, 1/2) representation of the Lorentz group is obtained. Since

the generators (2-20) commute, they act independently on the

four-component objects. A reasonable choice for them are given

by Hermitian 2×2 matrices, their basis given again by the Pauli

matrices (2-19) together with the identity 𝜎0 = 𝟙.
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ED was, in fact, the

first Lorentz-invari-

ant field theory and

inspired Einstein’s

special relativity.

Further, one can show that the (1/2, 1/2) representation trans-

forms Hermitian matrices into Hermitian matrices [18]. The four

independent components of a Hermitian matrix can be interpreted

as the components of a vector, which then corresponds to the

usual four-vector notation of relativity theory. Hence, the Lorentz

transformations of special relativity belong to the (1/2, 1/2) repres-

entation of the Lorentz group. However, this also reveals that four-

vectors consist of two spinors of rank 2. Therefore, four-vectors are

not the fundamental objects of spacetime and thus are not suited

to describe all physical systems.

Using the non-interacting four-vector Lagrangian

ℒ =
1

4
𝜕
𝜇
𝐵
𝜈
𝜕𝜇𝐵𝜈 −

1

4
𝜕
𝜇
𝐵
𝜈
𝜕
𝜈
𝐵𝜇 +

𝑚
2

2
𝐵
𝜇
𝐵𝜇(2-23)

with a generalised electromagnetic four-potential 𝐵
𝜇
[19] and the

Euler–Lagrange equations, one finds the Proca equation

𝑚
2
𝐵
𝜇
=
1

2
𝜕𝜈(𝜕

𝜈
𝐵
𝜇
− 𝜕

𝜇
𝐵
𝜈
)(2-24)

that describes massive, non-interacting bosons with spin 1. From

Eq. (2-24) the Maxwell equations can be derived, which is shown

in Section 2-2 c).

c) Derivation of physical theories

In this section the connection between the representations of

the Lorentz group introduced in Section 2-2 b) and some of the

“fundamental” physical theories are derived. While the close con-

nection between relativity theory and ED is well-known,
15

also the

Schrödinger equation can be derived from the Lorentz group in

the non-relativistic approximation. That is, while these theories

can formally be derived, their natural constants like the speed of

light 𝑐 or the reduced Planck constant ℏ have to be determined

experimentally.
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Electrodynamics

The Proca equation (2-24) describes massive spin-1 fields. However,

with 𝑚 = 0 it can also be used to describe massless photons by

𝜕𝜇𝐺
𝜇𝜈
= 0 (2-25)

with the dual electromagnetic tensor

𝐺
𝜇𝜈
= 𝜕

𝜇
𝐵
𝜈
− 𝜕

𝜈
𝐵
𝜇
. (2-26)

Photons are the exchange particles of electromagnetic interactions.

Hence, Eqs. (2-25) and (2-26) correspond to the homogeneous

Maxwell equations.

To derive the Maxwell equations in the presence of electrical

charges and currents, the Lagrangian (2-23) must be coupled to

the Dirac equation (2-22), which provides the required description

of spin-1/2 fields. A detailed discussion of this topic may be found

in Ref. [15]. However, here it is sufficient to note that the resulting

Lagrangian is locally𝑈(1) invariant. The conserved quantity related

to this symmetry according to Noether’s theorem is the Noether

current 𝐽
𝜇
satisfying the continuity equation (2-8). Then, the

inhomogeneous Maxwell equations read

𝜕𝜇𝐹
𝜇𝜈
= 𝐽

𝜈
, (2-27)

where 𝐽
𝜇
corresponds to the electrical four-current and 𝐹

𝜇𝜈
is the

electromagnetic tensor defined by

𝐹
𝜇𝜈
= 𝜕

𝜇
𝐴
𝜈
− 𝜕

𝜈
𝐴
𝜇
. (2-28)

Since Eq. (2-28) is anti-symmetric, i.e. 𝐹
𝜇𝜈
= −𝐹

𝜈𝜇
, the electro-

magnetic tensor contains just six independent components,

𝐹
𝑘0
≡ 𝐸

𝑘
,

𝐹
𝑘𝑙
≡ −𝜖

𝑘𝑙𝑚
𝐵
𝑚
,
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i.e. Eq. (2-25)

where 𝜖
𝑘𝑙𝑚

is the Levi–Civita symbol. By separating Eq. (2-27) into
its temporal and spatial parts, one finds

∇ ⋅ 𝐄 = 𝐽
0
,(2-29)

∇×𝐁− 𝜕𝑡𝐄 = 𝐉 ,(2-30)

which are the inhomogeneous Maxwell equations in differential

representation.

From here, also the homogeneous Maxwell equations can be

derived: The derivative of the product of the electromagnetic tensor

(2-28) and any completely anti-symmetric tensor is always zero.
16

A completely anti-symmetric tensor is, for example, given by the

Levi–Civita symbol. Hence,

𝐺
𝜇𝜈
∝ 𝜖

𝜇𝜈𝛼𝛽
𝐹
𝛼𝛽

satisfies Eq. (2-25), which analogously yields

∇ ⋅𝐁 = 0 ,(2-31)

∇×𝐄+ 𝜕𝑡𝐁 = 0 .(2-32)

Equations (2-29) to (2-32) are the Maxwell equations in differential

representation and form the foundations of ED.

Quantum mechanics

In Section 2-2 a) the fundamental transformations of the Lorentz

group were discussed, which are spatial rotations and boosts. How-

ever, physical theories should also be invariant with respect to the

choice of the spacetime origin. The corresponding transformations

are translations in spacetime. Therefore, by combining spatial

rotations, boosts, and temporal and spatial translations the Poin-

caré group is obtained. The Poincaré group is the fundamental

symmetry group of spacetime, underlying all physical theories.

In QM the concept of operators is of vital importance. The oper-

ators corresponding to physical quantities can be identified with

the corresponding symmetry generators as discussed in Appendix

B. With Eqs. (B-2) and (B-3) the Klein–Gordon equation (2-21) can
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17
This is the usual

interpretation of a

Dirac sea, in which

all states with negat-

ive energies are as-

sumed to be occupied

already.

18
i.e. for ℏ = 𝑚 = 1;

their values have to

be determined by ex-

perimental means

be written as

(�̂�
2
−𝐸

2
+𝑚

2
)𝜙 = 0 . (2-33)

The solutions of Eq. (2-33) are given by plane waves

𝜙(�̂�, 𝑡) = e
i(�̂��̂�−𝐸𝑡) (2-34)

with energies

𝐸 = ±𝑚√1+
�̂�2

𝑚2

that can be either positive or negative. However, the negative

energy solutions are neglected in the following.
17

In the non-relativistic limit |�̂�| ≪ 𝑚, where the kinetic energy of

an object is much smaller than its rest energy, one finds

𝐸 = 𝑚⎡⎢
⎣
1 +

�̂�
2

2𝑚2
+𝒪⎛⎜

⎝

�̂�
4

𝑚4
⎞⎟
⎠

⎤⎥
⎦
. (2-35)

With Eq. (2-35) the solutions (2-34) read

𝜙(�̂�, 𝑡) ≈ e−i𝑚𝑡 e
i(�̂�⋅�̂�−

�̂�2

2𝑚𝑡) ≡ e−i𝑚𝑡𝜓(�̂�, 𝑡) . (2-36)

The first term oscillates rapidly in comparison with the time de-

pendence of 𝜓. By inserting Eq. (2-36) into the Klein–Gordon

equation (2-21) and after some calculations [15] one finally finds

the Schrödinger equation for a free particle
18

(i𝜕𝑡 +
1

2
∇2)𝜓(�̂�, 𝑡) = 0 (2-37)

with the non-relativistic kinetic energy 𝐸 = �̂�
2
/2.

Equation (2-37) describes the motion of a non-interacting parti-

cle in free space characterised by the wave function 𝜓. To describe

the motion of a particle in an external potential 𝑉, one can simply

add an additional term, i.e.

(i𝜕𝑡 +
1

2
∇2 −𝑉(�̂�, 𝑡))𝜓(�̂�, 𝑡) = 0 . (2-38)
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This can also be mo-

tivated by symmetry

considerations [20].

With Eqs. (B-1) to (B-4) and by rearranging the terms one obtains

the usual Schrödinger eigenvalue equation in the presence of an

external potential,

𝐸𝜓(�̂�, 𝑡) = ⎛⎜
⎝

�̂�
2

2
+𝑉(�̂�, 𝑡)⎞⎟

⎠
𝜓(�̂�, 𝑡) ≡ ℋ𝜓(�̂�, 𝑡) .(2-39)

Here, the Hamiltonianℋ is defined as the observable, physical

operator corresponding the energy 𝐸. The probability of finding

a quantum system in an eigenstate of ℋ is determined by the

absolute square of the corresponding eigenstate due to Born’s

rule.
19

It should be noted that Eq. (2-39) does not further impose par-

ticular properties onto the Hamiltonianℋ or the potential 𝑉. The

usual Hermiticity condition, which is sufficient to guarantee the

reality of energy eigenvalues, is introduced as a postulate, i.e. it is

not a necessary condition per se. This fact is further discussed and

exploited in Chapter 4.

2-3 Fundamental symmetries in physical
theories

A fundamental symmetry usually refers to a symmetry of nature

which always holds. However, in this section the term will also

be used for symmetries which are emerging from fundamental

physical concepts and under which most physical systems are

invariant. These symmetries are connected to the three funda-

mental operations of time reversal, parity inversion, and charge

conjugation.

a) Time reversal

Time reversal is a fundamental symmetry operation in physics.

Most physical theories are unchanged if all motions are reversed;

they are time-reversal symmetric. Naively speaking, time-reversal
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C

Figure 2-3: Time re-

versal in a magnetic

field

20
The related oper-

ator 𝒞 is discussed in

Section 2-3 b).

symmetry means that an object, which has been moving for a

certain amount of time, will return to its initial state after the same

amount of “reversed” time.

To get a glimpse on the notion of time reversal, one can consider

a free particle moving in space. Intuitively, time reversal— in

the literal sense—simply means that the parameter 𝑡 is reversed,

i.e. 𝑡 → −𝑡. Time reversal also makes the particle move “back-

wards”, i.e. 𝐩 → −𝐩. A system is called time-reversal invariant if

its equations of motions are invariant under these transformations.

For a free particle, this is obviously the case, since its equation of

motion depends quadratically on the momentum.

ED is also time-reversal invariant if all charges, which are

creating the electromagnetic fields, are taken into account. To see

this, one might consider the movement of a charged particle, like

an electron with charge 𝑒, in the presence of a static, homogeneous

external field perpendicular to the initial direction of motion. For

an electric field 𝐄 the electric force 𝐅E = 𝑒𝐄 is independent of the

motion of the electron. Therefore, the equations of motion for the

electron are invariant under time reversal.

However, in the presence of a magnetic field 𝐁 the Lorentz force

𝐅L = 𝑒/𝑚e𝐩×𝐁 depends linearly on the momentum. Therefore, the

equations of motion for the electron apparently are not invariant

under time reversal. Figure 2-3 illustrates this scenario: The

electron, starting from point A, will move in a clockwise circular

motion to point B. If time and momentum are reversed, the electron

will, however, not return to its initial position, but again moves in a

clockwise circular motion to point C. This is due to the fact that

the Lorentz force is changing its sign under time reversal. In order

for the electron to return to its initial position, either the charge of

the electron or the magnetic field have to be flipped in addition. In

the former case, the corresponding symmetry operation is called

charge conjugation
20

and it transforms particles into antiparticles

and vice versa. In both cases, the Lorentz force and the canonical

momentum𝐩 = 𝐩kin−𝑒𝐀, which differs from the kinetic momentum

𝐩kin in the presence of a vector potential, is reversed; such effects

do not necessarily require the physical presence of a magnetic field
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e.g. see Ref. [24]

22
It is assumed that

this already includes

effects due to length

contraction.

+
−

+
−

+
−

+
−
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−
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+
−

○𝑒

Figure 2-4: Neutral

wire in the rest frame

of its cores

+ + + + + + + +
− − − − − −

○𝑒

Figure 2-5: The wire
in Fig. 2-4 in the rest

frame of the electrons

23
i.e. a magnetic field

depends on the frame

of reference

24
hence the inclusion

of the operator 𝒞

𝐁 = ∇ ×𝐀, though, as the Aharonov–Bohm effect demonstrates

[21–23], for example.

In reality, however, the magnetic field is inverted.
21

This may

seem peculiar at first, but it can be understood by considering the

simple physical process underlying the creation of a magnetic field.

For this, consider electrons moving in a neutrally charged wire,

i.e. the number of electrons equals the number of protons per area

and time
22

as shown in Fig. 2-4. Despite the presence of a steady
electric current, no electric field is created and so there is no effect

on a charged particle in the vicinity of the wire. Now, consider

a charged particle which is moving parallel to the electrons in

the wire at the same velocity. In the frame of reference of the

charged particle the electrons are resting, whereas the positively

charged cores are moving. This causes their separating distances

to contract slightly, thus increasing their density. Simultaneously,

the electrons are spread out due to the assumption above; these

opposite effects cause a charge imbalance as shown in Fig. 2-5.
That is, for a moving particle the wire does no longer appear neutral

and it thus experiences the effects of an electric field, so that the

charged particle is either attracted or repelled. In the rest frame

of the cores, this can effectively be described by the Lorentz force

via a magnetic field.
23

On time reversal, both the motions of the

charged particle and the motion of the electrons—and thus the

current—are reversed. If time reversal does not act on the charges

per se, the physical situation is unchanged and the direction of

the electric force on the moving particle is preserved as required

in Fig. 2-3. Thus, due to the definition of the Lorentz force, the

magnetic field must be inverted, which is in agreement with the

fact that the magnetic field is a consequence of the current in the

wire in the first place.

However, the alternative, which involves a charge conjugation,

is still worthwhile to discuss, as it actually corresponds to the

Lorentz transformation 𝒞𝒯 defined in Section 2-2 a). Since 𝒞𝒯
inverts the time-component of four-vectors, it can be considered to

be an operator for time reversal in its own right, but it necessarily

also includes a charge conjugation.
24

This can easily be seen by

applying 𝒞𝒯 to the four-current on the right-hand side of the
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25
cf. Fig. 2-3

26
Nevertheless, some

physicists are claim-

ing that it is not be-

cause both the elec-

tric and the mag-

netic fields must not

be inverted, e.g. see

Ref. [25]. However,

this contradicts the

discussions above.

27
That is, the quan-

tum time-evolution

operator is invariant

under time reversal

as shown in Section

2-4 b).

𝒞

+ −

𝒫

� �

𝒯

� �
Figure 2-6: Illustra-

tion of the discrete

fundamental symme-

try operations

Maxwell equations (2-27), for which the first component is the

charge density. In fact, this example also shows that 𝒞𝒯 does

not change the current because both the direction of movement

and the charge are inverted simultaneously; hence, the magnetic

field 𝐁 is unchanged by the time-reversal 𝒞𝒯. The fundamental

difference between the operators𝒯 and 𝒞𝒯 for time-reversal lies in

the fact that the former is required to invert trajectories,
25

whereas

the latter just inverts vectors in time; this may or may not be

equivalent depending on the system. Therefore, the real time-

reversal operator 𝒯 can be—but does not necessarily has to be—

a Lorentz transformation in a given situation.

To summarise, on time reversal all motions are reversed, so that

𝐣 → −𝐣 and 𝐁→ −𝐁. Moreover, 𝜌 → 𝜌 and 𝐄 → 𝐄 because charges

and thus the charge density 𝜌 are unchanged. The Maxwell equa-

tions (2-29) to (2-32) are invariant with respect to these changes,

which shows that ED is indeed time-reversal symmetric.
26

How-

ever, the Maxwell equations are also invariant under the Lorentz

transformation 𝒞𝒯, i.e. ED is a Lorentz invariant theory as already

mentioned in Section 2-2 c).
In fact, most processes in the universe are time reversible

concerning either classical physics but also on the quantum level.
27

This would imply that there exists no specific direction of time and

that time reversal is a fundamental symmetry of nature. However,

even on a macroscopic level there are systems violating time-

reversal symmetry due to the second law of thermodynamics, which

states that the entropy of an isolated system— e.g. the whole

universe—never decreases over time; i.e. there exists an arrow of

time. While the laws of thermodynamics are emergent properties of

large numbers of particles, time-reversal symmetry is also violated

by the fundamental laws of physics [26] as discussed in Section

2-3 b).

b) 𝒞𝒫𝒯 symmetry

Apart from the time-reversal symmetry discussed in Section 2-3 a),
there exist two other discrete fundamental symmetries, all three of

which are illustrated in Fig. 2-6. To summarise:
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28
This holds for the

electrical charge and

for all other types

of charges arising in

quantum field theory.

1) Time-reversal symmetry was introduced in Sections 2-2 a) and
2-3 a) and states that the evolution of a system is time reversible.

In such systems there exists no arrow of time, i.e. an observer

may not distinguish between future and past.

2) Parity-inversion symmetry was introduced in Section 2-2 a) and
states that the laws of physics are indifferent to the “handedness”

of objects; if the universe is mirrored, right-handed becomes

left-handed and vice versa. In such systems there exists no

preference for left-handedness or right-handedness, i.e. an

observer may not be able to distinguish between the universe

and its mirror image.

3) Charge-conjugation symmetry was briefly introduced in Section

2-3 a) and states that a system is invariant if all charges are

exchanged with their anti-charges.
28

In such systems there

exists no preferred type of charge, i.e. an observer may not

distinguish between particles and antiparticles.

While most systems— both classical and quantum— respect

these symmetries either separately or combined, they are not

fundamental in the sense that they are not obeyed by all physical

systems. There are particle decays caused by the weak force

violating either one of these symmetries [27–29]. However, their

combination𝒞𝒫𝒯 is considered to be a fundamental symmetry of all

physical laws [30–32] and it is closely related to Lorentz invariance

[33; 34]. In fact, the 𝒞𝒫𝒯 symmetry holds for any theory which is

invariant under Lorentz transformations and in which a vacuum

exists with the same property; these are the very principles on

which quantum field theories and the current understanding of

our world are built upon. Therefore, this fact is also known as the

𝒞𝒫𝒯 theorem.
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29
anti-linear unitary

2-4 Symmetry in quantum theories

In QM a system described by a Hamiltonianℋ is symmetric with

respect to 𝒮 if

[𝒮,ℋ] = 𝒮ℋ−ℋ𝒮 = 0 . (2-40)

That is, the Hamiltonian is invariant under the transformation

ℋ
′
= 𝒮

−1
ℋ𝒮, i.e.ℋ

′
=ℋ. Such operators 𝒮 can either be linear

or anti-linear as stated by Wigner’s theorem. For this thesis, the

anti-linear operators are of particular interest. Therefore, Sections

2-3 a) and 2-4 b) introduce the anti-linear time-reversal operator

and its related symmetry.

a) Wigner’s theorem

Transformations 𝑇 which leave the inner product of a Hilbert space

unchanged, i.e.

∣⟨𝑇𝜓
′
∣𝑇𝜓⟩∣ = ∣⟨𝜓

′
∣𝜓⟩∣ , (2-41)

are of particular relevance in QM. These symmetry transformations

of Hilbert spaces are represented by either unitary or anti-unitary
29

operators. This fact was first proven by Eugene Paul Wigner in

1931 [35] and is therefore calledWigner’s theorem. Since then, this

topic has been approached mathematically from several different

directions [36–43]. Appendix C contains a simple derivation of

Wigner’s theorem following Ref. [43].

The interesting thing about Wigner’s theorem is that, apart from

the common linear operators 𝒪 satisfying

𝒪(𝑎 |𝛼⟩ + 𝑏 ∣𝛽⟩) = 𝑎𝒪 |𝛼⟩ + 𝑏𝒪 ∣𝛽⟩ ,

also anti-linear operators 𝒜 satisfying

𝒜(𝑎 |𝛼⟩ + 𝑏 ∣𝛽⟩) = 𝑎
∗
𝒜|𝛼⟩ + 𝑏

∗
𝒜∣𝛽⟩ (2-42)
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30
The exact analogue

of Wigner’s theorem

in Euclidean spaces

is called the Mazur–

Ulam theorem [44].

31
Rotations in real

spaces can also be de-

scribed by unitary ma-

trices with determin-

ants of either ±1; this

must not be confused

with transformations

of complex spaces.

can describe fundamental symmetries in QM. Anti-linear operators

seem rather exotic and are usually not encountered in physical

under-graduate courses. In fact, there exists only one physical

transformation described by an anti-linear operator: time reversal,

the properties and symmetries of which are discussed in Sections

2-3 a) and 2-4 b).
Unitary and anti-unitary transformations can also be understood

in a geometric way by considering their analogues in the two-

dimensional Euclidean space.
30

As discussed in Section 2-1 b),
there are two different types of transformations which preserve the

inner product of Euclidean spaces. Figure 2-2 shows the difference
of these transformations when applied to geometric objects. In

a similar manner the unitary and anti-unitary transformations of

Wigner’s theorem can be understood in complex spaces.
31

Properties of anti-unitary operators

As can be concluded from the previous discussions, an anti-unitary

operator 𝒜 has the following properties:

1) 𝒜
†
is defined via

⟨𝒜𝜓
′
∣𝜓⟩ = ⟨𝜓

′
∣𝒜
†
𝜓⟩

∗
.

2) 𝒜 preserves Eq. (2-41) by

⟨𝒜𝜓
′
∣𝒜𝜓⟩ = ⟨𝜓

′
∣𝜓⟩

∗
= ⟨𝜓∣𝜓

′
⟩ .

3) 𝒜
2
is unitary because

⟨𝒜
2
𝜓
′
∣𝒜
2
𝜓⟩ = ⟨𝒜𝜓

′
∣𝒜𝜓⟩

∗
= ⟨𝜓

′
∣𝜓⟩ ,

which corresponds to the other possibility to preserve Eq. (2-41).

4) The operator

𝒰 = 𝒜𝒦
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Time reversal is in-

volutory: 𝒯
−1
= 𝒯.

is unitary, where𝒦 is the anti-linear complex-conjugation oper-

ator. Note that the converse is also true: If 𝒰 is unitary, then

𝒜 = 𝒰𝒦 is anti-unitary.

b) The time-reversal operator

The classical time-reversal operator was introduced in Section

2-3 b). Its definition can be generalised to QM by replacing the

momentum by its operator �̂�. However, time reversal takes a special

role in QM, which becomes obvious if an argument by Eugene

Wigner is considered [35]: A time-reversal invariant system, which

evolved over a time 𝑡, returns to its initial state when it evolves

“backwards” for the same amount of time 𝑡. In quantum mechanical

terms this translates to time evolution followed by time reversal

followed by time evolution followed by time reversal, i.e.
32

𝒰(𝑡)𝒯𝒰(𝑡)𝒯
−1︸ ︷︷ ︸

!
=𝒰−1(𝑡)

!
= 𝟙 , (2-43)

with the time evolution operator

𝒰(𝑡) = e
−iℋ𝑡

.

Equation (2-43) shows that time evolution is, as desired, reversed

under the time-reversal transformation. Further,

𝒯iℋ𝑡𝒯
−1 !
= −iℋ𝑡 , (2-44)

which clearly shows that the action of 𝒯 changes the sign of 𝑡.

Yet, since 𝑡 is just a real number and not an operator, one may

cancel it on both sides of Eq. (2-44),

𝒯iℋ𝒯
−1 !
= −iℋ. (2-45)

If 𝒯 would be an ordinary linear operator, then it would not act on

the imaginary unit i, which could be cancelled as well. However,

then Eq. (2-45) cannot be satisfied if the energy is bound to be

Symmetry in quantum theories 31



33
cf. Appendix B

34
Without any inter-

actions such a system

must still be invariant

under time reversal.

positive. Because of Wigner’s theorem, one must conclude that 𝒯

must be an anti-linear operator for time-reversal invariant quantum

systems, i.e. it must include a complex conjugation.

In fact, the property of being anti-linear is sufficient to define the

operation of time reversal in QM entirely. Because of its definition
33

(B-2), any anti-linear operator changes the sign of momentum in

the position-space representation. Moreover, since an anti-linear

operator does not act on the real position 𝑥, the fundamental

commutator (B-5) is preserved.
The former considerations reveal that the quantum time-reversal

operator is anti-linear. However, its exact definition depends on

the system. To understand this statement, one may first consider

a free particle, which is a time-reversal invariant system. In this

case, the time-reversal operator is simply given by

𝒯 =𝒦,(2-46)

with the complex-conjugation operator 𝒦. However, the time-

reversal operator is not always as simple as this. Its form heavily

depends on the physical system under consideration.

To illustrate this, one can extend the example from above by

introducing a spin.
34

The spin operator

�̂� = (𝜎1,𝜎2,𝜎3)
⊺

contains the Pauli matrices, which span an additional two-dimen-

sional Hilbert space. By using the relation

(�̂� ⋅ 𝐚)(�̂� ⋅ 𝐛) = 𝐚 ⋅ 𝐛 + i�̂�(𝐚 × 𝐛) ,

one finds that

�̂� ⋅ �̂� = ∣�̂�∣ .(2-47)

If the time-reversal operator (2-46) is applied to Eq. (2-47), the left-
hand side becomes negative, while the right-hand side remains

positive. Therefore, time reversal necessarily must flip the spin,

i.e. �̂� → −�̂�. Thus, the correct time-reversal operator for a spin
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35
Complex conjuga-

tion is not a physically

meaningful operation

per se.

system is given by

𝒯 = i𝜎2𝒦,

where the imaginary unit is necessary for time-reversal symmetry

to be anti-unitary.

Properties of the time-reversal operator

From a physical point of view, the time-reversal operator is the most

fundamental anti-linear operator in QM. Hence, every anti-linear

operator can be written in terms of the time-reversal operator,

𝒜 = 𝒪𝒯,

where 𝒪 is a linear operator.

From a mathematical point of view, however, the time-reversal

operator in turn can always be written in terms of the complex-

conjugation operator𝒦,
35

𝒯 = 𝒪
′
𝒦,

where 𝒪
′
is another linear operator. Since both 𝒯 and 𝒦 are

involutory, 𝒪
′
must also be involutory and satisfy the condition

𝒯
2
= 𝒪

′
𝒦𝒪

′
𝒦= 𝒪

′
𝒪
′∗
= 𝟙 .

c) Time-reversal symmetry

To conclude this section, time-reversal symmetry in QM is discussed.

As mentioned before, the Schrödinger equation (2-37) for a free
particle is time-reversal invariant. The reason for this lies in

the imaginary coefficient, which ensures that there is no distinct

direction of time [45]. Time-reversal symmetry is necessary so

that QM can be reduced to classical mechanics. To see this, it is

convenient to compare the free Schrödinger equation to an almost

identical equation describing the transfer of heat.
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Any temperature gradient ∇𝑇 necessarily leads to a heat flux

𝐪 = −𝑘∇𝑇,

where 𝑘 describes the thermal conductivity. This heat flux satisfies

the continuity equation

𝜕𝑄

𝜕𝑡
+∇ ⋅ 𝐪 = 0 ,

where 𝛿𝑄 describes the change in the internal heat energy per

volume.

If no additional heat energy is generated and if thermal black-

body radiation is neglected, the change of the internal amount

of heat contained in the volume depends only on the change in

temperature,

d𝑄

d𝑡
= 𝑚𝑐

d𝑇

d𝑡
,

where 𝑚 and 𝑐 are the mass and the specific heat capacity of the

considered material. Hence, the distribution of temperature is

described by the heat equation

𝜕𝑇

𝜕𝑡
=

𝑘

𝑚𝑐
∇
2
𝑇.(2-48)

Note that the heat equation (2-48) without heat sources or drains
has exactly the same form as the Schrödinger equation (2-37) for a
free particle. Nevertheless, the resulting dynamics is completely

different. Due to the second law of thermodynamics, heat only

spreads; hence, heat can accumulate only if time is reversed.

Therefore, the heat equation is not time-reversal invariant, i.e. there

exists a distinct direction of time. In the case of the Schrödinger

equation, time comes with an imaginary coefficient which prevents

this. That is, in QM time always appears in form of the combination

i𝑡. Therefore, it is possible to describe the time-reversal operation

by a non-linear operator as discussed above.

Just like QM, other classical wave phenomena are also time-

reversal invariant, however, for quite a different reason. Classical
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36
Nothing can move

faster than light, in-

cluding information.

37
At the present time,

string theory is in con-

sideration for such a

fundamental theory.

waves are described by a wave equation

𝜕
2
𝑢

𝜕𝑡2
= 𝑐

2
∇
2
𝑢 (2-49)

with a scalar field 𝑢 and a constant 𝑐. Unlike the heat equation

(2-48), Eq. (2-49) contains a second-order time derivative. Hence,

a wave equation is per se invariant under the time-reversal trans-

formation 𝑡 → −𝑡.

Last but not least, it should be mentioned that time-reversal

symmetry is closely related to the black hole information para-

dox. Black holes are immensely massive objects which can yet be

characterised by just a handful of parameters: mass, charge, and

spin. Further, because of the principle of locality,
36

no information

can escape a black hole by means of radiation. Therefore, all

information about particles falling into a black hole are “erased”.

This breaks time-reversal symmetry and thus the unitarity of time

evolution in QM discussed in Section 2-4 b). In fact, because of

this, QM demands a conservation of quantum information. Such

and similar seemingly incompatibilities between general relativity

and QM indicate that both of these theories are themselves not

fundamental, but that they emerge from another yet unknown

theory;
37

though, this is still a topic of current debate [46; 47].

2-5 Supersymmetry

In Section 2-3 some fundamental symmetries of the geometry

of spacetime were discussed. That is, the discrete symmetries

involved space, time and spacetime reflections. Moreover, also

symmetries between particles and antiparticles were mentioned.

Now, yet another type of symmetry should be considered which

involves the two fundamental types of particles: bosons and fer-

mions. Bosons are particles with integer spin governed by Bose–

Einstein statistics. Fermions, on the other hand, possess half-

integer spins and can be described by Fermi–Dirac statistics. While

fermions are the type of elementary particles forming matter, bo-

sons are the exchange particles of all interactions. Apart from
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38
The partners have

equal masses if the

SUSY is exact; if it is

broken, though, the

masses may differ.

39
cf. Eq. (B-5)

gravitation, a complete description of bosons, fermions, and their

interactions is provided by the standard model.

However, the properties of bosons and fermions are so vastly

different that one might not expect any symmetries between those

particles in the first place. Nevertheless, by allowing conversions

between bosons and fermions, a symmetry concept called super-

symmetry (SUSY) arises in which every boson possesses a fermionic

partner particle
38

and vice versa. Although SUSY provides a beau-

tiful mathematical description beyond the standard model, so far

there is no experimental evidence that it provides a more correct

or accurate description of nature than the standard model.

In the following, a brief introduction to the theory of SUSY is

provided along with an overview of the properties important for this

thesis. While there are many books on this subject, the discussions

in this thesis follow Ref. [48].

a) A simple supersymmetric model

A supersymmetric system must contain both bosons and fermions.

One of the simplest supersymmetric systems therefore consists of

the bosonic and fermionic harmonic oscillators.

The Bose oscillator

The harmonic oscillator is well-known and provides a model for

many physical phenomena. Although not common, the term Bose

oscillator is used here to exaggerate its role in the SUSY oscillator.

The Hamiltonian of the Bose oscillator reads

ℋB =
�̂�
2

2
+
𝜔
2
�̂�
2

2
,(2-50)

where �̂� and �̂� satisfy the fundamental commutator relations
39

[�̂�, �̂�] = i ,

[�̂�, �̂�] = [�̂�, �̂�] = 0 .
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40
They form a basis

since Eq. (2-50) com-

mutes with the occu-

pation number oper-

ator �̂�B = �̂�
+
�̂�
−
.

With the creation and annihilation operators

�̂�
±
=

1

√2𝜔
(𝜔�̂� ∓ i�̂�) , (2-51)

the Hamiltonian (2-50) can be written as

ℋB = 𝜔(�̂�
+
�̂�
−
+
1

2
) . (2-52)

The creation and annihilation operators (2-51) are adjoint to each
other and satisfy the commutator relations

[�̂�
−
, �̂�
+
] = 1 ,

[�̂�
±
, �̂�
±
] = 0 .

They can be used to ascent and descent the hierarchy of the occu-

pation number states,
40

�̂�
+
∣𝑛B⟩ = √𝑛B + 1 ∣𝑛B + 1⟩ , (2-53)

�̂�
−
∣𝑛B⟩ = √𝑛B ∣𝑛B − 1⟩ . (2-54)

Because there exists a ground state with energy 𝐸0 = 𝜔/2, which

is unoccupied, the annihilation operator per definition must satisfy

�̂�
−
|0⟩ = 0.

The Fermi oscillator

The Fermi oscillator is the fermionic equivalent of the Bose oscillator.

Its Hamiltonian reads [48]

ℋF = i𝜔�̂��̂� (2-55)

with the fermionic operators �̂� and �̂� satisfying the anti-commutator

relations

{�̂�, �̂�} = 0 ,

{�̂�, �̂�} = {�̂�, �̂�} = 1 ,
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41
cf. the two relations

(2-53) and (2-54)

where {𝐴,𝐵} = 𝐴𝐵+𝐵𝐴. In analogy to Eq. (2-51), one can construct
the fermionic creation and annihilation operators

̂𝑓
±
=
1

√2
(�̂� ∓ i�̂�) ,(2-56)

which again are adjoint to each other and satisfy

[ ̂𝑓
−
, ̂𝑓
+
] = 1 ,

[ ̂𝑓
±
, ̂𝑓
±
] = 0 .(2-57)

Using Eq. (2-56), the Hamiltonian (2-55) can be written as

ℋF = 𝜔(
̂𝑓
+ ̂𝑓

−
−
1

2
) .(2-58)

In contrast to the Bose oscillator (2-52), the Fermi oscillator (2-58)
possesses a negative ground state energy 𝐸0 = −𝜔/2.

Due to the Pauli exclusion principle, multiple occupations of fer-

mionic states are not allowed. Hence, the creation and annihilation

operators (2-56) act on the fermionic occupation number states as

follows,
41

̂𝑓
+
|0⟩ = |1⟩ ,

̂𝑓
−
|1⟩ = |0⟩ ,

̂𝑓
+
|1⟩ = 0 ,(2-59)

̂𝑓
−
|0⟩ = 0 .(2-60)

Because of the properties (2-59) and (2-60), the fermionic creation

and annihilation operators are nilpotent,

( ̂𝑓
±
)
2
= 0 ,

which is already encoded in the anti-commutator relations (2-57).
By choosing the fermionic states to be the standard Euclidean basis

states, i.e.

|0⟩ = ⎛⎜
⎝

1

0
⎞⎟
⎠
,
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42
i.e. the generators

of SUSY

|1⟩ = ⎛⎜
⎝

0

1
⎞⎟
⎠
,

the fermionic creation and annihilation operators (2-56) are given
by the following 2×2 matrices,

̂𝑓
+
= ⎛⎜
⎝

0 0

1 0
⎞⎟
⎠
, (2-61)

̂𝑓
−
= ⎛⎜
⎝

0 1

0 0
⎞⎟
⎠
. (2-62)

The supersymmetric oscillator

By combining the Bose oscillator (2-52) with the Fermi oscillator

(2-58), one obtains a model which contains both bosons and fermi-

ons. The states of this model can be described by |𝑛B, 𝑛F⟩ = |𝑛B⟩ |𝑛F⟩,

where 𝑛F = 0,1. Because of 𝑛F, one can distinguish two types of

states:

1) bosonic states |𝑛⟩ ≡ |𝑛, 0⟩,

2) fermionic states |𝑛⟩ ≡ |𝑛, 1⟩.

SUSY creates a relationship between them by transforming bosonic

states into fermionic states and vice versa. Hence, one can define

superoperators
42

with the following properties,

𝒬
+
|𝑛⟩ = |𝑛 − 1⟩ ,

𝒬
−
|𝑛⟩ = |𝑛 + 1⟩ ,

𝒬
+
|𝑛⟩ = 0 , (2-63)

𝒬
−
|𝑛⟩ = 0 . (2-64)

The superoperator 𝒬
+
“creates” a fermionic state by transforming

a boson into a fermion; accordingly, 𝒬
−
“annihilates” a fermionic

state by transforming a fermion into a boson. Therefore, the su-

peroperators can be expressed with the bosonic and fermionic

creation and annihilation operators as 𝒬
±
= �̂�

∓ ̂𝑓
±
, which imme-

diately shows that they are also adjoint to each other. Since the
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𝐸

|0⟩

|1⟩ |0⟩

|2⟩ |1⟩

⋮ ⋮
𝒬

+

𝒬
−

Figure 2-7: The spec-
trum of the SUSY os-

cillator

fermionic operators ̂𝑓
±
are nilpotent, the superoperators 𝒬

±
also

possess this property encoded in Eqs. (2-63) and (2-64).
A physical system is called supersymmetric if its Hamiltonian

ℋS commutes with the superoperators,

[ℋS,𝒬
±
] = 0 .(2-65)

In physical terms this condition means that all transformations

defined by the superoperators𝒬
±
conserve the energy of the system.

With Eqs. (2-63) and (2-64) one finds that a Hamiltonian satisfying

Eq. (2-65) can be written as

ℋS = 𝜔{𝒬
+
,𝒬

−
} .(2-66)

The prefactor is chosen such that the SUSY oscillator Hamiltonian

ℋS =ℋB +ℋF is obtained.

Equations (2-65) and (2-66) form a SUSY algebra, for which the

superoperators 𝒬
±
act as generators [48]. However, in contrast to

an ordinary Lie algebra as discussed in Section 2-1 b), there occur
two types of operators in a SUSY algebra:

1) Bosonic operators, like the Hamiltonian (2-66), do not change
the statistics of the state, i.e. there is no transformation from

bosons into fermions and vice versa.

2) Fermionic operators, like the superoperators (2-63) and (2-64),
change the statistics of a state from bosonic to fermionic and

vice versa.

Since the superoperators are nilpotent, i.e. (𝒬
±
)
2
= 0, the

Hamiltonian (2-66) can be written as

ℋS = (𝒬
+
+𝒬

−
)
2
.

Due to (𝒬
+
+𝒬

−
) being Hermitian, the eigenvalues ofℋS must be

positive. Further, because 𝒬
±
conserve the energy, the spectrum

is two-fold degenerate for 𝐸 > 0. However, the ground state with

𝐸 = 0 is unique and thus non-degenerate [48]. The spectrum of

the SUSY oscillator is illustrated in Fig. 2-7.
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43
i.e. linear combina-

tions of the bosonic

and fermionic states

44
Note that this is not

an actual potential en-

ergy.

b) Superpotentials

In Section 2-5 a) the simple SUSY oscillator was discussed. Now,

SUSY should be generalised to other types of potentials. With

Eqs. (2-61) and (2-62) the Hamiltonian (2-66) can be written solely

in terms of the bosonic creation and annihilation operators,

ℋS =
⎛⎜
⎝

�̂�
+
�̂�
−

0

0 �̂�
−
�̂�
+
⎞⎟
⎠
=
1

2
{�̂�
−
, �̂�
+
}𝟙 −

1

2
[�̂�
−
, �̂�
+
]𝜎3 , (2-67)

which, in general, acts on mixed states
43
|𝜓⟩ = (|𝑛⟩ , |𝑚⟩)

⊺
. Here,

the oscillator parameter is set to 𝜔 = 1 because other potentials in

general depend on different parameters. Instead of Eq. (2-51), the
generalised bosonic operators

�̂�
±
=
1

√2
(𝑊(�̂�) ∓ i�̂�) (2-68)

are introduced, which are first-order differential operators. They

contain the superpotential
44
𝑊. If𝑊 is real, �̂�

+
and �̂�

−
are adjoint

to each other. With𝑊(�̂�) = 𝜔�̂� the harmonic oscillator (2-50) is
obtained.

It is worth mentioning here that every Hamiltonian can be writ-

ten as a product of two linear differential operators [49]. Further,

a unique ground state exists for such supersymmetric systems

because of the boundary conditions imposed on the superpotential

𝑊 due to the normalisability of the wave function. A more detailed

discussion of the SUSY ground state can be found in Ref. [48].

Assuming that the superpotential can be written as a power

series, the operators (2-68) satisfy

{�̂�
−
, �̂�
+
} = �̂�

2
+𝑊

2
(�̂�) ,

[�̂�
−
, �̂�
+
] =

d𝑊

d�̂�
.

Hence, the Hamiltonian (2-67) can be written as

ℋS =
⎛⎜
⎝

ℋ− 0

0 ℋ+

⎞⎟
⎠
, (2-69)
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45
States are now la-

belled by their ener-

gies.

𝐸

𝐸 = 0

⋮ ⋮

Figure 2-8: Exactly

supersymmetric spec-

trum

𝐸 ⋮ ⋮

Figure 2-9: Broken-

supersymmetric spec-

trum

in which the Hamiltoniansℋ± contain the SUSY potentials

𝑉±(�̂�) =
1

2
(𝑊

2
(�̂�) ±

d𝑊

d�̂�
) .(2-70)

Note thatℋ+ andℋ− solely act on fermionic and bosonic states,

respectively. Note also that the roles of �̂�
±
are inverted between

ℋ
+
andℋ

−
; i.e. “annihilation” forℋ

−
means “creation” forℋ

+

and vice versa.

c) Spontaneous symmetry breaking

As discussed in Section 2-5 a), the SUSY oscillator possesses a non-

degenerate ground state with 𝐸 = 0. This case is called exact

supersymmetry and it is shown in Fig. 2-8. On the one hand,

there exists a bosonic ground state
45
|0⟩ if ℋ− |0⟩ = 0, i.e. |0⟩ is

annihilated by �̂�
−
and thus

𝒬
+
|0⟩ = 0 .(2-71)

On the other hand, there may also exist a fermionic ground state

|0⟩ of ℋ+— also called a fermionic zero mode [50]— which is

annihilated by �̂�
+
, so that

𝒬
−
|0⟩ = 0 .(2-72)

SUSY can be broken spontaneously, which means that the

ground state is no longer supersymmetric; that is, no ground state

satisfying either Eq. (2-71) or Eq. (2-72) exists. However, the other
features of supersymmetric systems are preserved, even though the

SUSY is broken. In particular, this means that the eigenvalues are

still two-fold degenerate. The spectrum of a broken-supersymmetric

system is shown in Fig. 2-9, which corresponds to Fig. 2-8 without

the ground state |0⟩.

Whether the SUSY is exact or broken is determined completely

by the asymptotic behaviour of the superpotential𝑊. By defining

𝑊± = lim𝑥→±∞𝑊(𝑥), one finds that the SUSY is

— exact if the signs of𝑊+ and𝑊− are different,
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Only the negative

sign is considered in

this example.

— broken if the signs of𝑊+ and𝑊− are equal.

This is an important property of the superpotentials, which is used

extensively in Section 5-2.

d) Quantum mechanics from supersymmetry

To conclude this discussion, a practical example of SUSY is con-

sidered. SUSY can be used to construct a Hamiltonian from a given

ground state wave function 𝜓0. Because of Eq. (2-70), a suitable
Hamiltonian is given by

46

ℋ=
1

2
(�̂�

2
+𝑊

2
(�̂�) −

d𝑊

d�̂�
) . (2-73)

The aim is to find the superpotential𝑊 for which the Hamiltonian

(2-73) possesses the ground state 𝜓0 with energy 𝐸0 = 0. With the

Schrödinger equation (2-39) and the identifications from Appendix

B one finds

𝜓
″
0

𝜓0
= (

𝜓
′
0

𝜓0
)

2

+
d

d�̂�
(
𝜓
′
0

𝜓0
) =𝑊

2
(�̂�) −

d𝑊

d�̂�
,

where the primes indicate derivatives. The simplest solution reads

𝑊(�̂�) = −
𝜓
′
0

𝜓0
= −

d

d�̂�
ln𝜓0 . (2-74)

If the ground state wave function is, for example, a Gaussian

function,

𝜓0(�̂�) = (
𝜔

𝜋
)
1/4

e
−𝜔�̂�2/2

,

then the superpotential (2-74) reads𝑊(�̂�) = 𝜔�̂�. The correspond-

ing Hamiltonian (2-73) then has the well-known form

ℋ=
1

2
(�̂�
2
+𝜔

2
�̂�
2
−𝜔)

which describes a harmonic oscillator (2-50) shifted by 𝜔, so that

its ground state energy is zero.
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Part I

Quantum Systems

I think I can safely say that nobody understands

quantum mechanics.

Richard Feynman

—The Character of Physical Law





1
cf. Fig. 3-1

Introduction to the first

part

3
Pray continue. Your narrative promises to be a

most interesting one.

Sherlock Holmes

—The Adventure of the Copper Beaches

Quantum mechanics (QM) is based on the premise that every

physical observable corresponds to a Hermitian operator whose

eigenvalues are real [52; 53]. Therefore, a Hermitian Hamilton-

ian is suitable to describe the energy of a quantum system and,

moreover, leads to a unitary time-evolution which conserves the

norm. However, Stone’s theorem uniquely connects a Hermitian

operator to a one-parameter family of unitary operators [54], thus

implying that unitary dynamics truly requires a Hermitian Hamil-

tonian. This simple and self-consistent concept lays the foundation

of QM,
1
which certainly is one of the most successful theories— if

not even the most successful theory to date— in physics.

Of course, all of this is well-known for almost a century now,

but there are caveats, though. QM only describes closed quantum

systems, i.e. systems which are isolated from any exchange of

energy or matter. In principle, this is not an issue because the

system could simply be chosen large enough so that all of these

interactions are described explicitly. In practice, however, large

numbers of degrees of freedom may be unfeasible or even im-

possible to treat explicitly. This can be avoided by considering open

quantum systems with lesser complexity, where the interaction

with an environment, which represents a large part of the system,

is described in an effective way. As a consequence, the overall

probability is no longer conserved, which means that such systems

cannot be described by Hermitian operators anymore. This is not

so much of an issue, tough: While the form of the Schrödinger
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Figure 3-1: The foun-
dations of standard

QM are elegant and

simple; yet, whole

books can be written

about them. The illus-

tration is taken from

Ref. [51].

2
cf. Section 2-2 c)

3
e.g. see Ref. [55]

equation (2-38) follows from fundamental properties of spacetime,
2

the properties of the Hamiltonian— in particular its Hermiticity—

are not determined per se. Hence, the Hermiticity of the Hamilton-

ian can be considered to be a sufficient mathematical constraint,

but it is not necessarily required.

This line of though leads to non-Hermitian quantum mechanics

(NHQM), i.e. the non-Hermitian generalisation of QM. In NHQM

the energies and other observables in general are complex quant-

ities and thus the probability densities are no longer conserved.

Whether or not a non-Hermitian Hamiltonian describes a phys-

ical system ultimately depends on the existence of a physically

meaningful interpretation of the additional imaginary parts of both

the Hamiltonian and the energies. This is quite similar to the

occurrence of a complex refractive index in optics,
3
which is used

for the mathematical description of the opacity of a material. Such

and similar effects apparently are unwanted, though, they can

also enrich physics [56]. Therefore, the first part of this thesis is

dedicated to the identification and description of physical systems

in NHQM, which correspond to a “natural complex extension of

the Hermiticity condition” [57].
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4
This distinction will

become clear in Sec-

tion 5-3.

After a general introduction to NHQM in Chapter 4, symmet-

ries of non-Hermitian Hamiltonians are discussed in Chapter 5
and methods are provided to symmetrise systems or make them

symmetric.
4
These concepts are at the heart of this thesis and

form the foundation for the discussions on linear and non-linear

quantum systems in Chapters 6 and 7, which range from simple

matrix models to experimentally realisable multi-well potentials.

Last but not least, a brief overview about experimental methods to

realise such systems is given in Chapter 8, which concludes the

first part of this thesis.

While the mathematical concepts introduced in the following

are rather simple and straightforward, they may still be hard to

grasp from a physical point of view. Hence, one should keep in

mind what Richard Feynman said in the 6-th part of his lecture

series The Character of Physical Law: “I think that I can safely

say that nobody understands quantum mechanics. Now, if you

appreciate this and don’t take the lecture too seriously that you

really have to understand in terms of some model what I’m going to

describe and just relax and enjoy, I’m going to tell you what nature

behaves like and if you simply admit that maybe she behaves like

this, you will find her a delightful, entrancing thing. So that’s the

way to look at the lectures, not to try to understand. Well, you have

to understand the english of course.” With these words the journey

into the non-Hermitian quantum world may begin.
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1
i.e. the wave func-

tion has to be zero at

some border

Hon-Hermitian quantum

mechanics

4
In QM all physical operators are required to be Hermitian, so that

their eigenvalues are real. However, apart from this there are no

physical or mathematical constraints which disallow the use of

non-Hermitian operators. In fact, non-Hermitian operators have

been used in physics since the emergence of QM to solve certain

problems which are either not solvable within the framework of

ordinary QM or only so with great difficulty [58]. The eigenvalues

of a non-Hermitian operator are not guaranteed to be real, although

they still can be. However, also complex quantities are not much of

an issue, as long as a suitable physical interpretation is at hand.

In the following, a short introduction to the theory behind non-

Hermitian quantum mechanics (NHQM) is given. The focus lies

on the basics which are required in the further course of this

thesis. A more thoroughful and comprehensive introduction to

NHQM is given in Ref. [58]. Note that for the sake of simplicity,

the following discussions in general refer to operators with non-

degenerate discrete spectra. However, the assumption of a discrete

spectrum does in fact not cause a loss of generality: By using a

box quantisation condition
1
the continuous part of the spectrum

becomes a discrete quasi-continuum. If the box size is increased

to infinity, this quasi-continuum becomes increasingly dense and

finally continuous.

4-1 Crash course on Hermitian
quantum mechanics

The basics of the “usual” Hermitian QM are quite simple and can

be summarised in just a few sentences: The objects of QM are
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2
cf. Appendix B-2

3
This is called the

spectral theorem.

physical states of a Hilbert space, say |𝜓⟩, |𝜙⟩. Any Hilbert space

defines an inner product ⟨𝜓|𝜙⟩ with the property

⟨𝜙∣𝜓⟩
∗
= ⟨𝜓∣𝜙⟩ .(4-1)

Acting on the physical states are operators 𝒪 which are character-

ised by the matrix elements ⟨𝜙|𝒪|𝜓⟩.
2
The adjoint operator 𝒪

†
is

defined by

⟨𝒪
†
𝜙∣𝜓⟩ = ⟨𝜙∣𝒪𝜓⟩ .

The most important properties in QM relating an operator to its

adjoint are Hermiticity,

ℋ
†
=ℋ,(4-2)

which ensures that the eigenvalues of the operator are real and

unitarity,

𝒰
†
𝒰 = 𝟙 = 𝒰𝒰

†
,(4-3)

which ensures that the operator does not change the inner product.

Hermitian matrices can always be diagonalised.
3
This ensures

that an orthogonal set of eigenstates exists, which can be used as

a basis. The basis states can then be normalised using the inner

product of QM. Further, the eigenvalues of a Hermitian operator

are guaranteed to be real because

𝐸𝑛 ⟨𝜓𝑚∣𝜓𝑛⟩ = ⟨𝜓𝑚∣ℋ𝜓𝑛⟩ = ⟨ℋ𝜓𝑛∣𝜓𝑚⟩
∗
= ⟨𝜓𝑛∣ℋ𝜓𝑚⟩

∗
,

where the property (4-1) of the inner product is used. Hence,

𝐸𝑛 = 𝐸
∗
𝑛 if the states are orthonormal with ⟨𝜓𝑛|𝜓𝑚⟩ = 𝛿𝑛𝑚.

In Hermitian QM the Hamiltonian occurring in the Schrödinger

equation (2-39) must be Hermitian by definition, to guarantee that

the energies are real. However, it should be noted that Hermiticity

is just a sufficient condition for the reality of the eigenvalues, but

not necessary. This is one of the very foundations on which this

thesis relies.
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Some further notes on the mathematical foundations of QM are

summarised in Appendix B.

4-2 Physical interpretation of non-
Hermitian Hamiltonians

As the name already suggests, operators in NHQM—the Hamil-

tonian in particular—are non-Hermitian in general, so that their

eigenvalues are not necessarily real. However, because the reality

of observables like the energy was the motivation for introducing

the Hermiticity condition in the first place, one should ask whether

scenarios with complex energies can be physically meaningful or

not. Despite the fact that there are various different routes to ob-

tain non-Hermitian Hamiltonians [58], in the following, only cases

involving a complex potential are considered, i.e. their Hamiltonian

can always be written as

ℋ=ℋH + i𝑉i , (4-4)

where 𝑉i is real and

ℋH = −
1

2
∇
2
+𝑉1

is a Hermitian Hamiltonian with the real potential 𝑉1.

a) Complex potentials

The effects of a complex potential 𝑉 = 𝑉1 + i𝑉i can be understood

by considering the probability density 𝜌 = ⟨𝜓|𝜓⟩. Its time-derivative

reads

d𝜌

d𝑡
=
1

2i
(⟨∇

2
𝜓|𝜓⟩ − ⟨𝜓|∇

2
𝜓⟩) − i(𝑉−𝑉

∗
)𝜌
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using the Hamiltonian (4-4). With the definition of the probability

current

𝑗 =
1

2i
(⟨𝜓|∇𝜓⟩ − ⟨∇𝜓|𝜓⟩)(4-5)

one finds the continuity equation

d𝜌

d𝑡
+∇𝑗 = 2𝑉i𝜌 .(4-6)

For 𝑉i = 0, Eq. (4-6) corresponds to the usual continuity equation
of QM in which the probability density 𝜌 is conserved. Hence, an

imaginary potential acts as source and drain of the probability

density.

b) Complex energies

As in Hermitian QM, the expectation values of operators in NHQM

are given by

𝐸𝑛 =
⟨𝜓𝑛∣ℋ∣𝜓𝑛⟩

⟨𝜓𝑛∣𝜓𝑛⟩
,

where 𝐸𝑛 ∈ ℂ ifℋ is non-Hermitian. Complex energy eigenvalues

mean that the corresponding states are not stationary in time, even

though they are solutions of the time-independent Schrödinger

equation (2-39). That is, the norm of a state reads

⟨𝜓𝑛(𝑡)∣𝜓𝑛(𝑡)⟩ = e
2 Im𝐸𝑛𝑡 ⟨𝜓𝑛(0)∣𝜓𝑛(0)⟩ ,

i.e. the norm increases exponentially if the imaginary part of the

energy is positive and decreases if the imaginary part is negative.

The norm is conserved in time if and only if the energy eigenvalues

are real.

So the question arises, how can complex observables like the

energy be understood physically? In fact, there already exists

an analogy in optical systems, which was already mentioned in

Chapter 3: The refractive index is a real physical quantity which
describes the phase velocity of electromagnetic waves travelling
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4
cf. Ref. [55]

5
cf. Section 4-6

6
Reminder: ℏ = 1

7
cf. Section 4-1

through a medium. However, by adding an imaginary part
4
the

effects of absorption can conveniently be taken into account. This

leads to an effective description of the phenomenon of absorption

within the usual formalism of ED. Hence, the imaginary part of

an eigenvalue can be considered as the result of an effective

description of an open quantum system.
5

Further, if complex eigenvalues occur explicitly in complex-

conjugate pairs, they can be related physically by emission and

absorption phenomena [59; 60]. Consider an isolated quantum

system with energy eigenvalues 𝐸𝑛. If the system is prepared

in an eigenstate, it will remain in that eigenstate for all times.

However, if the system is prepared in a superposition of two states,

there will be Rabi oscillations between those two states with the

frequency
6
𝜔𝑛𝑚 = (𝐸𝑛 −𝐸𝑚). If the system is coupled to a laser

field, one would find that 𝜔𝑛𝑚 is in the absorption spectrum, while

𝜔𝑚𝑛 = −𝜔𝑛𝑚 is in the emission spectrum. Therefore, the imaginary

parts of the energy eigenvalues of a non-Hermitian quantum system

can be symmetric as well. Such energy eigenvalues can even be

conserved in time, even though the norm of the corresponding

states is not conserved [61; 62]; by using both states with complex-

conjugate energy eigenvalues, a time-independent norm can be

constructed, for which the growing and decaying components

balance each other.

4-3 Bi-orthogonal basis

In ordinary QM there is only one orthogonal set of basis states

associated with a Hermitian operator.
7
However, the orthogonality

of the states is merely a consequence of the Hermiticity of the

operator. Consider the time-independent Schrödinger equation

(2-39) for two different energy eigenvalues 𝐸𝑛 ≠ 𝐸𝑚 and multiply

each of them by the state corresponding to the respective other

energy eigenvalue,

⟨𝜓𝑚∣ℋ∣𝜓𝑛⟩ = 𝐸𝑛 ⟨𝜓𝑚∣𝜓𝑛⟩ , (4-7)

⟨𝜓𝑚∣ℋ
†
∣𝜓𝑛⟩ = 𝐸

∗
𝑚 ⟨𝜓𝑚∣𝜓𝑛⟩ , (4-8)
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see Appendix A for

notes on the notation

where a complex conjugation and the properties of the inner product

were applied to the second equation. By subtracting both equations

one finds

(𝐸𝑛 −𝐸
∗
𝑚) ⟨𝜓𝑚∣𝜓𝑛⟩ = ⟨𝜓𝑚∣ℋ−ℋ

†
∣𝜓𝑛⟩ .(4-9)

For a Hermitian operator the right-hand side vanishes, so that

⟨𝜓𝑚|𝜓𝑛⟩ = 0 for 𝐸𝑛 ≠ 𝐸𝑚 since the eigenvalues are real. Though,

for non-Hermitian operators the right-hand side is in general non-

zero and the non-degenerate eigenstates are not orthogonal.

To get a glimpse on what is going on here, one has to change

the point of view: Eqs. (4-7) and (4-8) are, in fact, representations

of the left-hand and right-hand eigenvalue equations. In contrast

to Hermitian QM, the left-hand and right-hand eigenvectors do

not coincide in NHQM. Consider the left-hand and right-hand

eigenvalue equations
8
for a non-degenerate eigenvalue 𝐸𝑛,

ℋ∣𝜓𝑛⟩ = 𝐸𝑛 ∣𝜓𝑛⟩ ,(4-10)

⟨𝜓
𝑛
∣ℋ = ⟨𝜓

𝑛
∣𝐸𝑛 .(4-11)

Equation (4-11) corresponds to the right-hand eigenvalue equation

ℋ
†
∣𝜓
𝑛
⟩ = 𝐸

∗
𝑛 ∣𝜓

𝑛
⟩(4-12)

which is the adjoint equation of Eq. (4-10). For a Hermitian Hamil-

tonian withℋ=ℋ
†
, which has real eigenvalues, a comparison of

Eqs. (4-10) and (4-12) shows that |𝜓𝑛⟩ = |𝜓𝑛⟩. Thus, Eqs. (4-10) and
(4-11) are actually the same equation. In NHQM, whereℋ

†
≠ℋ,

Eqs. (4-10) and (4-11) are truly distinct. Therefore, 𝐸𝑛 and 𝐸
∗
𝑛 can,

in general, be considered as right-hand eigenvalues of two differ-

ent Hamiltoniansℋ andℋ
†
with the corresponding eigenstates

|𝜓
𝑛
⟩ ≠ |𝜓𝑛⟩. Although left-hand and right-hand eigenstates form no

orthogonal sets on their own, surprisingly, they are orthogonal to

each other in most cases. To see this, one can multiply the 𝑛-th

right-hand eigenvalue equation (4-10) by ⟨𝜓𝑚| and the 𝑚-th left-

hand eigenvalue equation (4-11) by |𝜓𝑛⟩ and subtract the results,

(𝐸𝑛 −𝐸𝑚) ⟨𝜓
𝑚
∣𝜓𝑛⟩ = 0 .(4-13)

56 Hon-Hermitian quantum mechanics



9
assuming that the

system is not in the

vicinity of an EP

In contrast to Eq. (4-9), where inner products between two right-

hand eigenstates were considered, one finds that ⟨𝜓
𝑚
|𝜓𝑛⟩ = 0 for

𝐸𝑛 ≠ 𝐸𝑚, which shows that left-hand and right-hand eigenstates

are indeed orthogonal to each other; they form a bi-orthogonal

basis [58; 63–65].

However, Eq. (4-13) does not allow for the opposite conclusion,

i.e. for 𝐸𝑛 = 𝐸𝑚 it is not guaranteed that ⟨𝜓
𝑚
|𝜓𝑛⟩ ≠ 0. Even if

the spectrum is non-degenerate, there exists the possibility that

the left-hand and right-hand eigenstates associated with the same

eigenvalue are orthogonal, i.e. ⟨𝜓
𝑛
|𝜓𝑛⟩ = 0. This phenomenon

is called self-orthogonality and it occurs at so-called exceptional

points (EPs), which will briefly be discussed in Section 4-3 a). Apart
from the EPs, the states {|𝜓

𝑚
⟩ , |𝜓𝑚⟩} form a bi-orthogonal basis for

every diagonalisable operatorℋ [66–68] with
9

⟨𝜓
𝑚
∣𝜓𝑛⟩ = 𝛿𝑛𝑚 (4-14)

and the closure relation

∑
𝑛

∣𝜓𝑛⟩⟨𝜓
𝑛
∣ = 𝟙 . (4-15)

Using a bi-orthogonal basis, the Hamiltonian can be written as

ℋ= ∑
𝑛,𝑚

∣𝜓𝑚⟩⟨𝜓
𝑚
∣ℋ ∣𝜓𝑛⟩⟨𝜓

𝑛
∣ = ∑

𝑛

𝐸𝑛 ∣𝜓𝑛⟩⟨𝜓
𝑛
∣ , (4-16)

where the properties (4-14) and (4-15) were used. By a suitable
transformation, the Hamiltonian can be diagonalised,

𝒮
⊺
Lℋ𝒮R =ℋdiag =

⎛⎜⎜⎜⎜

⎝

𝐸1
⋱

𝐸𝑁

⎞⎟⎟⎟⎟

⎠

,

where

𝒮L = ( |𝜓
1
⟩ ⋯ |𝜓

𝑁
⟩) , (4-17)

𝒮R = ( |𝜓1⟩ ⋯ |𝜓𝑁⟩) . (4-18)
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cf. Eq. (4-4)

Because of the closure relation (4-15), one finds that 𝒮R𝒮
⊺
L = 𝟙,

i.e. 𝒮R is the left inverse of 𝒮
⊺
L, which is in turn the right inverse of

𝒮R. Thus,

ℋ= 𝒮Rℋdiag𝒮
⊺
L

(4-19)

is equal to Eq. (4-16).
Equation (4-14) is called the bi-orthogonal product in the follow-

ing, though, it is also commonly known as the c-product [58] in

NHQM,

(𝜓𝑚∣𝜓𝑛) = ⟨𝜓
𝑚
∣𝜓𝑛⟩ ,(4-20)

which implies that | ⋅ ) = | ⋅ ⟩ and ( ⋅ | = ⟨ ⋅ | using the notation intro-

duced in Appendix A. The corresponding closure relation (4-15)
can be written as

∑
𝑛

∣𝜓𝑛)(𝜓𝑛∣ = 𝟙 .

The concept of bi-orthogonality is central in NHQM; in fact, they

are tied together so closely that even a comprehensive bi-orthogonal

quantum theory can be formulated [65]. While, at first glance, it

seems as if a bi-orthogonal basis could be used in almost the same

manner as any other basis, bi-orthogonal states may possess the

undesirable yet interesting property of self-orthogonality.

a) Self-orthogonality

Consider a non-Hermitian matrix of the form

ℋ(𝜆) =ℋ0 +𝜆𝑉,(4-21)

whereℋ0 and 𝑉 are Hermitian matrices which do not commute,

i.e. [ℋ0,𝑉] ≠ 0, and 𝜆 is a control parameter. For 𝜆 ∈ ℂ the

matrix (4-21) is non-Hermitian,
10

so that there exists a set of bi-

orthogonal eigenstates {|𝜓
𝑛
(𝜆)⟩ , |𝜓𝑛(𝜆)⟩} satisfying Eqs. (4-14) and

(4-15). However, if there exists at least one critical value 𝜆 = 𝜆c
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Figure 4-1: Topology
around a second-or-

der EP

11
cf. Eq. (2-19)

for which [69]

⟨𝜓
𝑛
(𝜆c)∣𝜓𝑛(𝜆c)⟩ = 0 , (4-22)

then the state 𝜓𝑛(𝜆c) is self-orthogonal [58].

The term “self”-orthogonality is somewhat misleading, though.

At 𝜆c two eigenstates ofℋ coalesce, so that two “different” left-

hand and right-hand eigenstates are orthogonal in the sense of

Eq. (4-14). However, this phenomenon is accompanied by a sim-

ultaneous coalescence of the corresponding eigenvalues. While

degeneracy of the eigenvalues also occurs in Hermitian QM, the

coalescence of both eigenvalues and eigenstates is exclusive to

NHQM. This forms a singularity in the parameter space, at which

the spectrum becomes incomplete and the bi-orthogonal basis is

defective; hence, the Hamiltonianℋ(𝜆c) is not diagonalisable [70].

Because of this and due to the exceptional topological properties

of the complex energy surface in their regions, such points are

commonly called exceptional points (EPs), e.g. see Refs. [58; 71–

74].

At an EP a symmetry is spontaneously broken and there occur

bifurcations in the energy eigenvalues. The topology of two complex

energy eigenvalues in the vicinity of an EP is illustrated in Fig. 4-1.
Each energy eigenvalue is bound to a different Riemann surface,

respectively. However, the Riemann surfaces are crossing, which

causes an exceptional behaviour: If the system parameters are

varied adiabatically in such a manner that the energy eigenvalues

are moving around the EP, they will switch their positions in the

process. That is, it requires two complete iterations of this variation

to restore the initial order of the energy eigenvalues [75]. EPs with

this property are said to be of second order; of third order if three

iterations are required, etc. Further, EPs exhibit a property similar

to chirality [71; 76].

This unusual behaviour can be illustrated with a simple example.

For this, consider the Hamiltonian (4-21), where ℋ0 = 𝜎3 and

𝑉 = 𝜎1 are given by Pauli matrices,
11

i.e.

ℋ= ⎛⎜
⎝

1 𝜆

𝜆 −1
⎞⎟
⎠
. (4-23)
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12
i.e. the Hamiltonian

(4-23) is non-Hermi-

tian

13
cf. Appendix D

The eigenvalues of this matrix are readily obtained and read

𝐸±(𝜆) = ±
√1 + 𝜆2(4-24)

with the corresponding right-hand eigenstates

∣𝜓±⟩ =
⎛⎜
⎝

−𝜆

1 −𝐸±(𝜆)
⎞⎟
⎠
.(4-25)

Obviously, both Eqs. (4-24) and (4-25) coincide for12 𝜆± = ±i; hence,
there exist two EPs. With the parametrisation

𝜆(𝜑) = i + 𝜌exp(i𝜑) ,

where 𝜌≪ |𝐸+ −𝐸−| and 𝜑 ∈ [0, 2𝜋], the EP at 𝜆+ can be encircled.

The eigenvalues (4-24) then read

𝐸±(𝜑) = ±√𝜌e
i𝜑
2 √2i + 𝜌ei𝜑 ≈ ±√2i𝜌e

i𝜑
2

and can be written as

𝐸+ = √2𝜌e
i
2(𝜑+

𝜋
2 ) ,(4-26)

𝐸− = √2𝜌e
i
2(𝜑+

5𝜋
2 ) .(4-27)

After a complete encircling, i.e. 𝜑 = 1,… ,2𝜋, the eigenvalues (4-26)
and (4-27) switch places; only after a second encircling the initial

eigenvalues are restored. This corresponds exactly to the scenario

shown in Fig. 4-1.
The phenomenon of self-orthogonality is rather common in

NHQM and it occurs if there exists no similarity transformation

which reduces a non-Hermitian matrix to a Jordan normal form. It

is not restricted to certain types of non-Hermitian Hamiltonians

and also occurs in other fields of physics [72]. Despite the fact that

EPs occur only at particular parameter values, they are not a rare

phenomenon either. Moreover, in contrast to QM, the eigenvalues

which are involved in an EP can possess the same symmetry; usually,

eigenvalues with the same symmetry do not cross but form an

avoided crossing
13

instead.
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The bi-orthogonal

product is complex

due to the missing

complex conjugation.

b) Normalisation

So far it has been shown that left-hand and right-hand eigenstates

form a bi-orthogonal basis. Though, strictly speaking, this means

that Eq. (4-13) only yields

⟨𝜓
𝑚
∣𝜓𝑛≠𝑚⟩ = 0 .

But Eq. (4-14) holds only for a bi-orthonormal basis, i.e. the basis

states must be properly normalised. Hence, it is worthwhile to take

a closer look onto normalisation procedures in NHQM.

Consider an𝑁×𝑁 non-Hermitian Hamiltonianℋ with𝑁 lin-

early independent eigenstates {𝜓𝑛 ∶ 𝑛 = 1,… ,𝑁} of the right-hand

Schrödinger equation (4-10). If the eigenstates are not yet normal-

ised, Eq. (4-14) must be replaced by

⟨𝜓
𝑚
∣𝜓𝑛⟩ = 𝑁𝑛𝛿𝑛𝑚 , (4-28)

where𝑁𝑛 = ⟨𝜓
𝑛
|𝜓𝑛⟩ ≠ 0. Though, this is possible only if the system

is in a parameter region far away from an EP; otherwise, some of

the states become almost self-orthogonal, which makes them non-

normalisable. The Hamiltonian can be written in the form (4-19),
where the states in Eqs. (4-17) and (4-18) are not normalised. To

normalise them, one may try to multiply each of them by a suitable

complex number,

∣�̂�𝑛⟩ = 𝑅𝑛 ∣𝜓𝑛⟩ ,

⟨�̂�
𝑛
∣ = ⟨𝜓

𝑛
∣ 𝐿𝑛 ,

so that 𝐿𝑛𝑅𝑛 =𝑁𝑛.

By using the Euler representations of the complex numbers
14

one finds

∣𝐿𝑛∣ ⋅ ∣𝑅𝑛∣ = ∣𝑁𝑛∣ , (4-29)

𝜆𝑛 +𝜌𝑛 = 𝜑𝑛 , (4-30)

where 𝜆𝑛, 𝜌𝑛, and 𝜑𝑛 are the phases of 𝐿𝑛,𝑅𝑛, and𝑁𝑛, respectively.

Equations (4-29) and (4-30) apparently yield only two degrees of
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freedom for every pair of bi-orthogonal eigenstates, i.e. one for

the absolute values of the normalisation factors and one for their

phases. However, there is a third degree of freedom, since the

global sign of the phase— the global ± phase— can be chosen

arbitrarily.

At an EP, however, some states cannot be normalised properly

using Eq. (4-28) due to 𝑁𝑛 = 0. Though, an EP is a singularity

and even for a small perturbation of the system parameters the

property of self-orthogonality vanishes. Yet, in the vicinity of an

EP the value𝑁𝑛 ≈ 0 is still quite small. In principle, this renders

the states normalisable, but in practice the division of the nearly

self-orthogonal state |𝜓𝑛⟩ by the small number √𝑁𝑛 causes the

components of the wave functions to become extremely large, as

the Hermitian inner product shows,

⟨𝜓𝑛∣𝜓𝑛⟩ ∝
1

𝑁𝑛
.(4-31)

Yet, the Hermitian inner product (4-31) can still be used to re-

normalise the states, i.e.

∣�̃�𝑛⟩ =
1

√ ⟨𝜓𝑛∣𝜓𝑛⟩
∣𝜓𝑛⟩ ,

so that ⟨�̃�𝑛|�̃�𝑛⟩ = 1 and ⟨�̃�
𝑛
|�̃�𝑛⟩ ≠ 1; then, the re-normalised eigen-

state |�̃�𝑛⟩ is of the order 𝒪(1), in principle. This re-normalisation is

useful if, for example, a specific algorithm or library for non-Hermi-

tian eigenvalue problems yields eigenstates which for mathematical

reasons are normalised with respect to the bi-orthogonal product

(4-28); yet, because of physical motivations
15

the eigenstates must

be normalised with respect to the Hermitian inner product.

However, the numerical division of large numbers is problematic

and can potentially cause a loss of precision, which leads to a

decrease in the number of significant digits using standard tech-

niques. Although a numerical calculation will never take place

exactly at an EP due to round-off errors,𝑁𝑛 can still be as small as

machine precision. Hence, it is discouraged to use the Hermitian

norm (4-31) in the vicinity of EPs.
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cf. Eq. (4-22) in par-

ticular

17
cf. Section 4-4 a)

18
This might be the

case far away from

any EPs.

19
cf. Appendix B-3

4-4 The metric operator

As discussed in Section 4-3 b), the modified inner product (4-20)
can be used to normalise bi-orthogonal states in NHQM. Actually,

Eq. (4-20) defines a kind of an inner product for states |𝜓𝑛⟩ and

|𝜓𝑚⟩ of the Hilbert space,

(𝜓𝑚∣𝜓𝑛) = ⟨𝜂𝜓𝑚∣𝜓𝑛⟩ , (4-32)

where 𝜂 is a metric operator with the property

𝜂 ∣𝜓𝑚⟩ = ∣𝜓
𝑚
⟩ .

For a bi-orthonormal basis the metric operator 𝜂must be Hermitian

because

⟨𝜓
𝑚
∣𝜓𝑛⟩ = ⟨𝜂𝜓𝑚∣𝜓𝑛⟩ = 𝛿𝑛𝑚 = ⟨𝜓𝑚∣𝜂𝜓𝑛⟩ = ⟨𝜓𝑚∣𝜓

𝑛
⟩ .

In this case the bi-orthogonal norm is real, but not necessarily

positive definite, as the discussion on self-orthogonality in Section

4-3 a) shows;16 though, it is still positive semi-definite. The concept

of indefinite metrics is not new both in physics [77; 78] and math-

ematics [79; 80]. Such an indefinite metric gives rise to a Krein

space [81; 82], in which, for example, non-Hermitian operators

with real spectra are self-adjoint.
17

In contrast, under the assumption that the inner product (4-32)
is positive definite,

18
a complete quantum theory can be built

upon this metric in pretty much the same manner as the ordinary

quantum theory (e.g. see Refs. [83–86]). Such a non-Hermitian

quantum theory possesses, among other features, a unitary time

evolution [87] and a suitable variational principle can be found

[84]. As noted in Ref. [85], the metric operator 𝜂 has to be bounded

because the Hilbert space defined by Eq. (4-32) must be norm

complete.

One should also note that the definition of the Hermitian adjoint

with respect to the bi-orthogonal product (4-32) must be changed

accordingly. With the usual definition of the Hermitian adjoint
19
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cf. Eq. (4-2)

21
cf. Eq. (4-3)

one finds

⟨𝜓
𝑚
∣ℋ𝜓𝑛⟩ = ⟨𝜓𝑚∣𝜂ℋ𝜓𝑛⟩

!
= ⟨ℋ

♯
𝜓
𝑚
∣𝜓𝑛⟩ = ⟨𝜓𝑚∣(ℋ

♯
)
†
𝜂𝜓𝑛⟩ ,

which yields the definition of the bi-adjoint

ℋ
♯
= 𝜂

−1
ℋ
†
𝜂(4-33)

for a Hermitian metric operator 𝜂.

a) Quasi-Hermiticity

Hamiltonians with the property
20
ℋ
♯
= ℋ possess real spectra

with respect to the bi-orthogonal product (4-32),

𝐸𝑛 = ⟨𝜓
𝑚
∣ℋ𝜓𝑛⟩ = ⟨𝜓

𝑛
∣ℋ

♯
𝜓𝑚⟩

∗
= ⟨𝜓

𝑛
∣ℋ𝜓𝑚⟩

∗
= 𝐸

∗
𝑚𝛿𝑛𝑚 ,

i.e. 𝐸𝑛 = 𝐸
∗
𝑛 analogously to the Hermitian spectra in Section 4-1.

Therefore, such operators are called quasi-Hermitian [84].

b) Quasi-Unitarity

Obviously, the time evolution generated by a general non-Hermitian

Hamiltonianℋ is not unitary because

𝒰
†
= (e

−iℋ𝑡
)
†
= e

iℋ†𝑡
≠ 𝒰

−1
.

However, the bi-orthogonal product (4-32) of two time-dependent

states reads

i
d

d𝑡
⟨𝜓

𝑚
(𝑡)∣𝜓𝑛(𝑡)⟩ = ⟨𝜓

𝑚
(𝑡)∣ℋ−ℋ

♯
∣𝜓𝑛(𝑡)⟩ ,

i.e. it is invariant under the time evolution generated by a quasi-

Hermitian Hamiltonianℋ if ⟨𝜓(𝑡)|𝜂|𝜓(𝑡)⟩ is a conserved quantity.

The time-evolution operator 𝒰 defined by a quasi-Hermitian

Hamiltonianℋ has the property
21
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cf. Section 4-2 a)

23
cf. Appendix B

𝒰
♯
= 𝒰

−1
,

and is thus said to be quasi-unitary [87; 88].

4-5 Complex symmetric Hamiltonians

In Section 4-2 the physical interpretation of non-Hermitian quan-

tum systems has already been discussed, particularly for quantum

systems which are non-Hermitian due to a complex external poten-

tial.
22

The Hamiltonians of such systems belong to the particular

class of complex symmetric Hamiltonians.

Consider a generic Hamiltonian as defined in Eq. (2-39),

ℋ=
�̂�
2

2
+𝑉(�̂�) , (4-34)

where 𝑉(�̂�) is a complex-valued function of the real positions �̂�.

The adjoint of the Hamiltonian (4-34) reads

ℋ
†
=
(�̂�
†
)
2

2
+𝑉

∗
(�̂�) =

�̂�
2

2
+𝑉

∗
(�̂�) ,

where the Hermiticity of the momentum operator �̂�
†
= �̂� was used.

For 𝑉(�̂�) ∈ ℝ the Hamiltonian is Hermitian,ℋ
†
=ℋ, which is the

usual case in QM. However, for 𝑉(�̂�) ∈ ℂ the Hamiltonian satisfies

ℋ
†
=ℋ

∗ (4-35)

instead. This is because
23
�̂�
∗
= −�̂�, i.e. �̂�

2
is invariant under

complex conjugations. Note that Eq. (4-35) is equivalent to the

conditionℋ=ℋ
⊺
, i.e. 𝑉 = 𝑉

⊺
.

The property (4-35) of being complex symmetric holds for all

“physical” Hamiltonians in NHQM, which are described by a com-

plex potential. In fact, all Hamiltonians which are considered in this

thesis are complex symmetric, even though they are non-Hermitian.

Another example for such a Hamiltonian is given by Eq. (4-21) with
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cf. Appendix E

𝜆 ∈ ℂ. For 𝜆 ∈ ℝ the Hamiltonian (4-21) is Hermitian, which is a

special case of a complex symmetric Hamiltonian.

a) Complex symmetric matrix models

Since all physical quantum systems with a complex potential can

be described by a complex symmetric Hamiltonian in their infinite-

dimensional position-space representation, this property must

be preserved in any finite-dimensional approximation, especially,

because any non-Hermitian matrix can be written in a complex

symmetric form [89]. Moreover, if a Hamiltonian becomes non-

Hermitian due to an effective description, there is no physical

motivation for writing such a Hamiltonian in a non-symmetric form.

A simple consideration shows that this is of no concern. If a quan-

tum systems is discretised with dimension𝑁, e.g. by some approx-

imation,
24

the states |𝜓𝑛⟩ become vectors with complex coefficients

𝜓
(𝑘)
𝑛 for 𝑘 = 1,… ,𝑁. Then, the potential term of the Hamiltonian

(4-34) cannot affect the property (4-35) because it only corresponds
to the diagonal of the Hamiltonian matrix, i.e. 𝑉(𝑥)𝜓

(𝑘)
𝑛 ∝ 𝜓

(𝑘)
𝑛 .

On the other hand, the kinetic part of Eq. (4-34) corresponds to a
second-order derivative with respect to the position 𝑥 and can be

approximated by a finite difference, i.e.

�̂�
2
𝜓
(𝑘)
𝑛 ∝ (𝜓

(𝑘+1)
𝑛 −𝜓

(𝑘)
𝑛 ) + (𝜓

(𝑘−1)
𝑛 −𝜓

(𝑘)
𝑛 ) ;

hence, the kinetic part provides off-diagonal matrix elements of

the Hamiltonian matrix, which must satisfy 𝐻𝑘𝑙 = 𝐻𝑙𝑘 for all

combinations of 𝑘, 𝑙 = 1,… ,𝑁. However, since �̂� is Hermitian,

any physically suitable approximation must also yield a Hermitian

matrix for the kinetic part, which satisfies Eq. (4-35).

66 Hon-Hermitian quantum mechanics



25
maybe with the ex-

ception of the whole

universe itself

b) Bi-orthogonal basis for complex symmetric

Hamiltonians

For complex symmetric Hamiltonians the set of bi-orthogonal states

is complete [63; 90]. Hence, there exists a complete bi-orthogonal

basis for all discrete, non-Hermitian quantum systems.

By looking at Eqs. (4-10) and (4-12), it is easy to see that the left-
hand and right-hand eigenstates of a complex symmetric Hamilton-

ian are related by the complex conjugation,

∣𝜓
𝑚
⟩ = ∣𝜓

∗
𝑚⟩ . (4-36)

The corresponding inner product (4-20) is given by [73]

(𝜓𝑚∣𝜓𝑛) = ⟨𝜓
∗
𝑚∣𝜓𝑛⟩ .

This immediately implies that

(𝜓𝑚∣ = ⟨𝜓
∗
𝑚∣ = ∣𝜓

∗
𝑚⟩

†
= ∣𝜓𝑚⟩

⊺
= ∣𝜓𝑚)

⊺
,

i.e. the states are just transposed and not Hermitian adjoint to each

other; hence, they share the symmetry of the Hamiltonian.

As discussed in Section 4-3 b), in principle, there are three

degrees of freedom when normalising a pair of bi-orthogonal eigen-

states. In order to preserve the symmetry (4-36) of the states for
complex symmetric Hamiltonians, there remains only one degree

of freedom, which is the global ± phase.

4-6 Open quantum systems

Although often considered in QM, in reality there exist no closed

quantum systems.
25

Any experiment is—much to the dismay of any

experimentalist—coupled to an uncontrollable environment, which

will perturb the system, eventually causing completely different

dynamics. However, the explicit treatment of the environment

is often unfeasible. Moreover, even if solutions to a microscopic
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ℋsys

system

ℋenv

environment

𝑉int

Figure 4-2: A system

and its environment

26
cf. Section 4-5

description of the quantum systems and its environment could be

derived, there would occur a vast amount of information of which

the major part corresponds to the environment and is uninteresting.

Instead, NHQM allows for the treatment of open quantum systems

which involve only a small number of relevant variables.

According to QM any quantum system can be described by a

Hermitian Hamiltonian of the form [91]

ℋ=ℋsys ⊗ 𝟙env + 𝟙sys ⊗ℋenv +𝑉int ,(4-37)

whereℋsys andℋenv are the Hamiltonians for the localised system

and the infinite environment, respectively, and 𝑉int describes the

interactions between them. This scenario is illustrated in Fig. 4-2.
Here,ℋsys possesses discrete eigenvalues which are perturbed by

the continuous spectrum of the environment.

It is often difficult— if not impossible— to treat such systems

either analytically or even numerically. Therefore, one often must

resort to the theory of open quantum systems,

ℋeff =ℋsys + �̃�int .(4-38)

Such Hamiltonians can, for example, be derived by tracing out

the environmental degrees of freedom [91] or by using projection-

operator methods [92; 93]. They are described effectively by a

complex potential �̃�int [63], which governs the interactions with

the environment, though, the environment is no longer explicitly

treated. In contrast to Eq. (4-37), the resulting Hamiltonian (4-38)
is non-Hermitian due to �̃�int and can be written in a complex

symmetric form
26

[89]. Hence, NHQM allows for an effective

description of open quantum systems (e.g. see Ref. [94]). Typically,

the considered system is much smaller than the environment, which

actually would be infinitely large. Hence, the effective treatment

of the system corresponds to a substantial simplification of the

problem. If the interaction term vanishes, Eq. (4-38) becomes

Hermitian and describes the idealised case of an isolated quantum

system.

In open quantum systems one may still determine the solutions

of the time-independent Schrödinger equation (2-39). However,
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This also holds for

a bi-orthogonal basis

[95].

28
cf. Section 4-1

due to the non-Hermiticity of the system, the eigenvalues become

complex, so that the norm of the states are changing in time as

discussed in Section 4-3; this corresponds to the gain and loss of

probability. Due to the presence of gain and loss, open quantum

systems in general are not time-reversal invariant. That is, in

contrast to QM, there exists a distinguished direction of time [60].

Hence, the solutions cannot a priori be considered as “stationary”

states. Nevertheless, the calculation of steady states is of particular

interest, which is a core topic in this thesis.

If the potential �̃�int is small enough, though, it can be considered

as a perturbation of the Hermitian Hamiltonian. It is interesting to

investigate under which circumstances the real spectrum remains

real under a non-Hermitian perturbation. The answer depends on

whether or not the eigenstates of the perturbed quantum system

form a Riesz basis [95; 96]. That is, a set of states {|𝜉𝑛⟩} is a Riesz

basis for the Hamiltonian if and only if there exists a bounded

invertible operator 𝒪 such that |𝜉𝑛⟩ = 𝒪 |𝜓𝑛⟩, where {|𝜓𝑛⟩} form an

orthogonal basis.
27

a) Choice of the inner product

While left-hand and right-hand eigenstates coincide in Hermitian

QM and thus form an orthogonal basis, in NHQM neither the left-

hand nor the right-hand eigenstates can form a basis on their own.

Therefore, the Hermitian inner product
28

of two right-hand or two

left-hand states cannot be interpreted in the same manner as in

Hermitian QM. There exist two possible approaches to deal with

this, which correspond to different interpretations:

1) The bi-orthogonal product (4-32) can be used as an inner product,
which preserves some of the mathematical properties of QM.

However, by introducing a new metric, a new quantum theory is

defined in which the left-hand and right-hand eigenstates of the

eigenvalues of the Hamiltonian form a bi-orthogonal basis. In the

course, one defines a newHilbert space in which quasi-Hermitian

Hamiltonians are effectively Hermitian. The motivation for the

bi-orthogonal product is mainly of mathematical nature, as it
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cf. the concluding

remarks in Ref. [97]

allows for an elegant mathematical description of NHQM, similar

to the usual Hermitian QM.

2) The usual inner product between left-hand and right-hand states,

respectively, is still valid if the non-Hermiticity is considered as

a pure consequence of boundary conditions, i.e. they effectively

describe open quantum systems with non-unitary evolutions
29

as described in Section 4-4 b). In this scenario, only the effective
Hamiltonian (4-38) is non-Hermitian, while the whole system is

still Hermitian and described by Eq. (4-37).

Both of these choices for the inner product can be interpreted

as analytical continuations of the inner product of Hermitian QM

into the non-Hermitian domain. However, in the remainder of this

thesis, non-Hermiticity is always considered to be a result of an

effectively described open quantum system.
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cf. Section 2-2 a)

2
cf. Section 2-5

3
Otherwise, the over-

all amount of matter

and anti-matter in the

universe should be

symmetric.

Symmetry and

Symmetrisation

5
Chapter 2 already gives a short overview of symmetry in physics.

Further, in Section 2-4 the concept of symmetry in QM is discussed.

In the following, this discussion is continued and extended to

NHQM using the foundations laid in Chapter 4. In the course of

this chapter, the concepts of 𝒫𝒯-symmetric
1
and SUSY

2
QM are

shortly summarised. Then, symmetrisation is introduced as a tool

in NHQM and its relations to exact symmetries are discussed.

Note that, for the sake of simplicity and clarity, from now on

the eigenstates are labelled by their eigenvalues in contrast to

Chapter 4. While the introduction of the bi-orthogonal basis in the

previous chapter profited from the index notation of the states,

e.g. |𝜓𝑛⟩, the discussions in this chapter become much clearer

without it; that is, in the following, |𝐸⟩ and |𝐸⟩ denote the left-hand

and right-hand eigenstates corresponding to the eigenvalue 𝐸.

5-1 𝒫𝒯-symmetric quantum systems

Spacetime inversion was already introduced in Section 2-2 a), as
it emerges from the structure of the Lorentz group. Remember

also that, according to Eq. (2-18), the generators of real spacetime

are invariant to spacetime inversions described by 𝒞𝒫𝒯; this

corresponds to the 𝒫𝒯 operator in the absence of charges. 𝒫𝒯

symmetry, however, is no fundamental symmetry on its own because

charge conjugation is neither;
3
i.e. 𝒫𝒯 cannot be a fundamental

symmetry because of the 𝒞𝒫𝒯 theorem. However, if a complex

spacetime ℂ
(1,3)

is considered in the absence of charges, one

finds that the corresponding Lorentz group consists only of two

disconnected components [1]:
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Figure 5-1: The

Doomsday Clock [98]

is an example of a

𝒫𝒯-symmetric sys-

tem. If the direction

of time is reversed,

space must also be

reflected to return

the system to its

initial state.
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cf. Section 2-3 b)

5
cf Section 2-5 a)

6
cf. Section 2-4

1) The proper Lorentz group and the 𝒫𝒯 component, both with

the property det𝛬 > 0.

2) The 𝒫 and the 𝒯 components, with the property det𝛬 < 0.

In this sense the concept of 𝒫𝒯 symmetry emerges naturally in

complex extensions of theories in real spacetime. For fermions and

charged particles, though, 𝒞𝒫𝒯 is still the fundamental symmetry.
4

In real spacetime 𝒫𝒯 symmetry is also worthwhile to consider,

which holds for NHQM in particular. In fact, the interest in non-

Hermitian Hamiltonians rapidly increased after Carl Bender and

Stefan Boettcher introduced the concept of 𝒫𝒯-symmetric QM in

1998 [1; 99]. The Hamiltonian of such a quantum system must

satisfy Eq. (2-40) with the 𝒫𝒯 operator, i.e.

[𝒫𝒯,ℋ] = 0 ,(5-1)

so that 𝒫𝒯 transformations conserve the energy.
5
Here, the actions

of the linear parity operator 𝒫 and the anti-linear time-reversal

operator 𝒯 are defined as
6

𝒫 ∶ �̂� → −�̂� , �̂� → −�̂� ,

𝒯 ∶ �̂� → −�̂� , i → −i .

Since both operators reverse the momentum, their combination

must preserve it,

𝒫𝒯 ∶ �̂� → −�̂� , i → −i .(5-2)

All of these operators are involutory, i.e. 𝒫
2
= 𝒯

2
= (𝒫𝒯)

2
= 𝟙. Of

course, the 𝒫𝒯 operator is also anti-linear, such that its action

involves a complex conjugation which represents time reversal.
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cf. Sections 4-5 and
4-6

Thus, 𝒫𝒯 essentially is the operation of spacetime reflection, which

is illustrated in Fig. 5-1.
In the case of a complex symmetric Hamiltonian of the form

(4-34) with a complex external potential,
7
the condition (5-1) re-

duces to

[𝒫𝒯,𝑉(�̂�)] = 0 , (5-3)

because the kinetic part of the Hamiltonian is invariant under

the transformation (5-2). Hence, a complex potential 𝑉(�̂�) is 𝒫𝒯-

symmetric if it satisfies the condition 𝑉
∗
(−�̂�) = 𝑉(�̂�); in other

words, the real part of the potential must be a symmetric function

and the imaginary part must be an anti-symmetric function in

space.

𝒫𝒯-symmetric quantum systems possess some outstanding prop-

erties. By applying the 𝒫𝒯 operator to the Schrödinger eigenvalue

equation (2-39) one finds

𝒫𝒯ℋ|𝐸⟩ =ℋ𝒫𝒯|𝐸⟩
!
= 𝐸

∗
𝒫𝒯|𝐸⟩ ,

where Eq. (5-1) and the non-linearity of the 𝒫𝒯 operator were used.

One can conclude that for every eigenstate |𝐸⟩ which is a solution

of a 𝒫𝒯-symmetric Hamiltonian with eigenvalue 𝐸, 𝒫𝒯|𝐸⟩ is also

a solution with eigenvalue 𝐸
∗
. The eigenvalues of a 𝒫𝒯-symmetric

Hamiltonian thus always occur in complex-conjugate pairs. If the

eigenstates obey the same symmetry as the Hamiltonian, that is

𝒫𝒯|𝐸⟩ = |𝐸⟩, the eigenvalues must even be real. This is called

exact or unbroken 𝒫𝒯 symmetry and, together with its simplicity,

is the reason for the success and popularity of 𝒫𝒯 symmetry in

NHQM. In regions with complex-conjugate eigenvalues, though,

the 𝒫𝒯 symmetry is said to be broken.

In 𝒫𝒯-symmetric QM the parity operator 𝒫 defines an indefinite

norm as discussed in Section 4-4 [100; 101]. Yet, also a positive
norm can be constructed for a 𝒫𝒯-symmetric, non-Hermitian

quantum system if the𝒫𝒯 symmetry is unbroken. In this case there

exists another linear operator 𝒞 which commutes both with 𝒫𝒯

and the Hamiltonianℋ, i.e. it is a hidden symmetry of the system

[57; 102–104]. Like 𝒫 and 𝒯, the operator 𝒞 is also involutory and
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8
cf. Section 2-3 b)

9
see Ref. [1] and ref-

erences therein

10
cf. Section 2-4 a)

is thus called “charge conjugation”; therefore, 𝒫𝒯-symmetric QM

always obeys the “𝒞𝒫𝒯 theorem”.
8
Moreover, 𝜂 = 𝒞𝒫 is a metric

operator of the type discussed in Section 4-4.
𝒫𝒯 symmetry is well established nowadays and several books

were already published on the subject, e.g. see Refs. [1; 74; 105].

It is applicable to all domains of physics, ranging from classical and

wave-mechanical systems over QM to quantum field theories.
9
Since

its first observation in optical wave guides [106], 𝒫𝒯 symmetry was

also observed experimentally, among other fields, in mechanical [1;

107], electrical [108; 109], and only recently in quantum systems

[110–113]. Of particular interest is also the study of EPs in 𝒫𝒯-

symmetric open quantum systems [114–117], since they are an

exclusive feature of non-Hermitian systems as discussed in Section

4-3 a). In recent years advances were made towards technical

applications in superconducting wires [118; 119], 𝒫𝒯 lasers [120;

121], synthetic materials [122; 123], NMR spectroscopy [124], and

also in WPT [125; 126]; the latter will further be discussed in the

second part of this thesis. There is even a proposal for using a 𝒫𝒯-

symmetric Hamiltonian to approach the Riemann hypothesis [127;

128].

Yet in QM, 𝒫𝒯 symmetry is just a special case of the broader

class of anti-unitary symmetries allowed by Wigner’s theorem.
10

In

spite of its simplicity, 𝒫𝒯 symmetry requires for specific potentials

with symmetric real parts and anti-symmetric imaginary parts as

discussed above. In Section 5-3 a method for finding systems with

looser requirements but similar spectral properties is introduced

and compared to anti-unitary symmetries and 𝒫𝒯 symmetry in

particular.

5-2 Non-Hermitian supersymmetric
quantum systems

In Section 2-5 SUSY was introduced as a symmetry between bosons

and fermions. In principle, though, SUSY requires only for two

different types of states which can be related. As discussed in
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Section 4-3, in any non-Hermitian quantum system there exist right-

hand and left-hand eigenstates corresponding to the same energy

eigenvalues. This closely resembles the broken-supersymmetric

spectrum shown in Fig. 2-9. Hence, one may already assume

that left-hand and right-hand states can be related using a non-

Hermitian SUSY Hamiltonian of the form (2-69) with a suitable

superpotential𝑊.

In the following, the application of SUSY to NHQM is investig-

ated. For the sake of simplicity, a specific type of complex, 𝒫𝒯-

symmetric but broken-supersymmetric potential is considered to

demonstrate the concept. Nevertheless, the discussions apply

analogously to non-𝒫𝒯-symmetric potentials as well.

a) Complex superpotentials

Consider a superpotential of the specific form

𝑊(𝑥) = 𝜔�̂�
𝑛

with 𝑛 ≥ 1. Because of Eq. (2-70), this superpotential generates
the potentials

𝑉±(�̂�) =
𝜔
2

2
�̂�
2𝑛
±
𝑛𝜔

2
�̂�
𝑛−1

which for 𝑛 = 1 both correspond to the potential of a harmonic

oscillator. From Section 2-5 c) it is known that the SUSY is broken if
𝑛 is even. Hence, the simplest non-trivial, broken-supersymmetric

potentials read

𝑉±(�̂�) =
𝜔
2

2
�̂�
4
±𝜔�̂� ,

which are real for𝜔 ∈ ℝ. However, by choosing𝜔 = i the potentials

become complex, i.e.

𝑉±(�̂�) = −
(i�̂�)

4

2
± i�̂� . (5-4)
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11
i.e. adjoint with the

opposite sign

Since i�̂� is invariant under𝒫𝒯, the potentials (5-4) are𝒫𝒯-symmet-

ric, meaning that they describe balanced gain and loss. Therefore,

the corresponding Hamiltonians

ℋ
±
=
1

2
(�̂�
2
− �̂�

4
) ± i�̂�

possess either real or complex-conjugate eigenvalues. Note thatℋ
+

andℋ
−
are still adjoint to each other, even though the potentials

correspond to non-Hermitian quantum systems.

Now, one can introduce the generalised “creation” and “annihi-

lation” operators (2-68)

�̂�
±
=

i

√2
(�̂�
2
∓ �̂�) = −(�̂�

±
)
†

(5-5)

which can be used to write the Hamiltoniansℋ
±
in the form (2-67).

However, in contrast to cases with real potentials, the operators

(5-5) are non-Hermitian and not adjoint to each other; instead, they

are anti-adjoint
11

to themselves. From Eqs. (2-67) and (2-69) it is
known that

ℋ± = �̂�
∓
�̂�
±
.(5-6)

Since the representation ofℋ
−
resembles the harmonic oscilla-

tor (2-52) with its energy shifted by 𝜔/2, one may introduce the

following notation:

ℋ≡ℋ
−
,

(ℋ)
†
≡ℋ

+
.

Hence, the states which correspond toℋ
−
are considered to be

right-hand eigenstates defined by

ℋ|𝐸⟩ = 𝐸 |𝐸⟩ ,(5-7)

while the states which correspond toℋ
+
are interpreted as left-

hand eigenstates defined by

⟨𝐸|ℋ = ⟨𝐸|𝐸 .(5-8)
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Sinceℋ is complex symmetric, the left-hand and right-hand eigen-

states are simply related by a complex conjugation,

|𝐸⟩ = |𝐸
∗
⟩ .

Becauseℋ andℋ
†
are directly related by the broken SUSY,

their spectra are completely identical. Moreover, from Eq. (5-8)
it follows that the spectrum of ℋ

†
is complex-conjugate to the

spectrum ofℋ, i.e.

ℋ
†
|𝐸⟩ = 𝐸

∗
|𝐸⟩ . (5-9)

Hence, the eigenvalues 𝐸 can either only be real or occur in

complex-conjugate pairs. These are the same spectral properties

which the 𝒫𝒯-symmetric systems in Section 5-1 possess.

Imaginary vs. complex superpotentials

As mentioned above, the operators (5-5) are not adjoint to each
other. This is a result of the bi-orthogonality of the basis in NHQM.

Nevertheless, they are still related by being anti-adjoint to each

other, which is a consequence of the specific form of the superpoten-

tial𝑊(�̂�) = i�̂�
2
= −𝑊

∗
(�̂�), i.e. it is purely imaginary. In this case,

one can introduce another set of operators ̂𝑑
±
= −�̂�

∓
to represent

the Hamiltonians (5-6),

ℋ
+
= ̂𝑑

+ ̂𝑑
−
,

ℋ
−
= ̂𝑑

− ̂𝑑
+
.

However, if the superpotential is complex, an independent set of

“creation” and “annihilation” operators

̂𝑑
±
=
1

√2
(𝑊

∗
(�̂�) ∓ i�̂�)

formed by𝑊
∗
exists, which corresponds to another pair of Hamil-

tonians
∼
ℋ
±
being adjoint to ℋ

∓
. That is, while an imaginary

superpotential only connects a Hamiltonian ℋ to its adjoint, a

complex superpotential connects two different Hamiltonians and
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12
Note that the poten-

tial energy is complex

in both cases.

13
cf. Ref. [129]

their adjoints.
12

This represents a significant difference from the

Hermitian case with a real superpotential and leads to a theory

which cannot provide balanced gain and loss in the sense that the

eigenvalues are either only real or pairwise complex-conjugate.
13

This becomes clear in the further course of this thesis. For now, it

is simply assumed that the superpotentials are purely imaginary

and thus satisfy Eq. (5-5).

Symmetrisation operators

In Section 2-5 a) the superoperators were introduced as the gener-

ators of SUSY. The dominant feature of the superoperators is that

they transform the different types of states with the same energy

into each other. The operators (5-5) possess similar properties,

though, they are not symmetry generators:

1) With Eqs. (5-6) and (5-7) one finds that

ℋ
†
(�̂�
−
|𝐸⟩) = �̂�

−
�̂�
+
�̂�
−
|𝐸⟩ = �̂�

+
ℋ|𝐸⟩ = 𝐸(�̂�

−
|𝐸⟩) ,(5-10)

where |𝐸⟩ is a right-hand eigenstate ofℋwith energy eigenvalue

𝐸. Hence, �̂�
−
|𝐸⟩ is a left-hand eigenstate ofℋ with eigenvalue

𝐸
∗
,

⟨𝐸| (�̂�
+
)
†
ℋ= ⟨𝐸| (�̂�

+
)
†
𝐸
∗
.

2) Analogously, with Eqs. (5-6) and (5-9) one finds that

ℋ(�̂�
+
|𝐸⟩) = �̂�

+
�̂�
−
�̂�
+
|𝐸⟩ = �̂�

+
ℋ
†
|𝐸⟩ = 𝐸

∗
(�̂�
+
|𝐸⟩) ,(5-11)

i.e. �̂�
+
|𝐸⟩ is a right-hand eigenstate ofℋwith energy eigenvalue

𝐸
∗
if |𝐸⟩ is a left-hand eigenstate ofℋ with energy eigenvalue

𝐸.

In the course of this calculation, an important property of the

operators �̂�
±
is found, which follows directly from the definition of

the Hamiltonians (5-6):

�̂�
−
ℋ= �̂�

−
�̂�
+
�̂�
−
=ℋ

†
�̂�
−
,(5-12)
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14
𝑆 is not necessarily

the inverse of 𝑆; this

is discussed in Sec-

tion 5-3 in detail.

�̂�
+
ℋ
†
= �̂�

+
�̂�
−
�̂�
+
=ℋ�̂�

+
. (5-13)

The relations (5-12) and (5-13) replace the commutator relations

(2-65) for the superoperators. Therefore, �̂�
±
are not symmetry

operators but symmetrisation operators: In the following, a right-

hand symmetrisation operator 𝑆 is defined by

ℋ𝑆 = 𝑆ℋ
† (5-14)

and a left-hand symmetrisation operator 𝑆 is defined by

𝑆ℋ =ℋ
†
𝑆 . (5-15)

The general concept of symmetrisation is further investigated in

Section 5-3. Nevertheless, it is reasonable to change the notation
here already, i.e. �̂�

+
→ 𝑆 and �̂�

−
→ 𝑆.

Equations (5-10) and (5-11) show that 𝑆 transforms left-hand

eigenstates into right-hand eigenstates and 𝑆 does the opposite.
14

However, the resulting states are no longer normalised. To under-

stand this, there are two different cases to consider:

1) If the energy 𝐸 is real, then the symmetrisation operators

transform between eigenstates with the same energy 𝐸 = 𝐸
∗
,

𝑆 |𝐸⟩ = 𝛼 |𝐸⟩ , (5-16)

𝑆 |𝐸⟩ = 𝛼 |𝐸⟩ . (5-17)

Hence,

|𝐸⟩
!
=
1

𝛼
𝑆(
1

𝛼
𝑆 |𝐸⟩) =

1

𝛼𝛼
ℋ|𝐸⟩ =

𝐸

𝛼𝛼
|𝐸⟩ ,

which can be satisfied by the choice 𝛼 = 𝛼 = √𝐸.

2) If the energy𝐸 is complex instead, the symmetrisation operators

transform between eigenstates with complex-conjugate energies

𝐸 and 𝐸
∗
,

𝑆 |𝐸⟩ = 𝛼 ∣𝐸∗⟩ , (5-18)

𝑆 |𝐸⟩ = 𝛼 ∣𝐸
∗
⟩ , (5-19)
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𝑆 ∣𝐸
∗
⟩ = 𝛽 |𝐸⟩ ,(5-20)

𝑆 ∣𝐸∗⟩ = 𝛽 |𝐸⟩ .(5-21)

Analogously to the case of a real energy one finds 𝛼 = 𝛽 = √𝐸

and 𝛼 = 𝛽 = √𝐸∗.

Note that these results are consistent with respect to both the

bi-orthogonal and the Hermitian norm, which were discussed in

Section 4-6 a). That is, consider a given norm

⟨⋅∣𝐸⟩ = 1 ,

where ⟨⋅| can be taken either by a left-hand or a right-hand eigen-

state. The energy expectation value can now be calculated using

the same norm,

⟨⋅∣ℋ∣𝐸⟩ = ⟨⋅∣𝑆𝑆∣𝐸⟩ = √𝐸⟨⋅∣𝑆∣𝐸∗⟩ = 𝐸⟨⋅∣𝐸⟩ .

Scattering states

SUSY does not only relate bound states ofℋ andℋ
†
corresponding

to discrete energy eigenvalues, but also scattering states which

form a continuum. In the limit of continuous energies the difference

between exact and broken SUSY vanishes, so that the relations

(5-18) to (5-21) hold in both cases. Further, spectral singularities

may appear in this continuum if the superpotential is complex

[130–132].

Scattering states occur if a spatially extended potential remains

finite for 𝑥 → ∞ or 𝑥 → −∞, i.e.

lim
𝑥→±∞

d𝑉

d𝑥

!
= 0 .

With Eq. (2-70) one finds the trivial condition

lim
𝑥→±∞

d𝑊

d𝑥
=
d

d𝑥
lim
𝑥→±∞

𝑊(𝑥) ≡
d

d𝑥
𝑊±(𝑥)

!
= 0

for the superpotential𝑊. Hence, at least one of the asymptotic

values𝑊± must be finite.
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15
cf. Ref. [48]

16
e.g. totally reflect-

ive or completely re-

flectionless potentials

17
One can still think

of the states as being

labelled by a number

in increasing order.

SUSY also relates the transmissive and reflective properties of

the potentials. Without giving the calculations,
15

one may find that

— the reflection probabilities are equal, i.e. |𝑅+|
2
= |𝑅−|

2
,

— in the special case of𝑊+ =𝑊− also the transmission probabilit-

ies are equal, i.e. |𝑇+|
2
= |𝑇−|

2
.

Therefore, by starting with a given potential which possesses some

specific properties,
16

SUSY allows for finding other non-trivial

potentials with the same properties.

b) Supersymmetric chains

Section 5-2 a) shows that if a non-Hermitian Hamiltonianℋ and

its adjointℋ
†
are related by broken SUSY directly, then the sym-

metrisation operators satisfying Eqs. (5-14) and (5-15) are first-

order differential operators. However, also higher-order differential

operators are suitable choices [129]. This can be understood by

introducing SUSY chains. For simplicity, it is assumed that the

spectrum is entirely real. However, the same line of argument can

be applied to Hamiltonians with complex eigenvalues.

Consider a Hamiltonian

ℋ1 = �̂�
+
1 �̂�

−
1

with the ground state energy𝐸
(1)
0 = 0 and an entirely real spectrum.

The bosonic operators

�̂�
±
1 =

1

√2
(𝑊1(�̂�) ∓ i�̂�)

are defined by the superpotential𝑊1. The SUSY partner ofℋ1 is

given by

ℋ2 = �̂�
−
1 �̂�

+
1 .

If the SUSY is exact, then the operators �̂�
±
1 connect states with

different “occupation numbers”,
17
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∣𝐸
(2)
𝑛 ⟩ =

�̂�
−
1 ∣𝐸

(1)
𝑛+1⟩

√𝐸(1)
𝑛+1

, ∣𝐸
(1)
𝑛+1⟩ =

�̂�
+
1 ∣𝐸

(2)
𝑛 ⟩

√𝐸(1)
𝑛+1

.

Apart from the ground state 𝐸
(1)
0 , each energy level occurs in both

the spectrum ofℋ1 andℋ2, respectively, i.e. 𝐸
(1)
𝑛+1 = 𝐸

(2)
𝑛 .

This procedure can now be repeated: By introducing another

Hamiltonian

ℋ3 = �̂�
+
3 �̂�

−
3

with

�̂�
±
3 =

1

√2
(𝑊3(�̂�) ∓ i�̂�) ,

one can again construct an exact SUSY partner. However, by

requiring that the SUSY partner ofℋ3 is equal toℋ2, i.e.

ℋ2
!
= �̂�

−
3 �̂�

+
3 ,

the Hamiltoniansℋ1 andℋ3 can be connected;ℋ1,ℋ2, andℋ3

then form a SUSY chain. Instead of the trivial choice �̂�
±
3 = �̂�

±
1 , one

can also chose �̂�
±
3 = (�̂�

∓
1 )
†
, which corresponds to the requirement

ℋ3 =ℋ
†
1. In this case, the eigenstates ofℋ1 andℋ3 are related

by

∣𝐸
(3)
𝑛 ⟩ =

�̂�
+
3 �̂�

−
1 ∣𝐸

(1)
𝑛 ⟩

√𝐸(1)𝑛 𝐸(3)𝑛

, ∣𝐸
(1)
𝑛 ⟩ =

�̂�
+
1 �̂�

−
3 ∣𝐸

(3)
𝑛 ⟩

√𝐸(1)𝑛 𝐸(3)𝑛

.

The spectra of the operatorsℋ1 andℋ3 =ℋ
†
1 are complex-conjug-

ate to each other, i.e. 𝐸
3
𝑛 = (𝐸

1
𝑛)
∗
. By using the same notation as

in the previous section, that is |𝐸⟩ ≡ |𝐸
(1)
𝑛 ⟩ and |𝐸∗⟩ ≡ |𝐸

(3)
𝑛 ⟩, one

obtains

|𝐸⟩ =
�̂�
+
1 (�̂�

+
1 )
†
∣𝐸∗⟩

|𝐸|
, |𝐸∗⟩ =

(�̂�
−
1 )
†
�̂�
−
1 |𝐸⟩

|𝐸|
.
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𝐸 ⋮ ⋮ ⋮ ⋮

Figure 5-2: An even

SUSY chain

𝐸 ⋮ ⋮ ⋮ ⋮ ⋮

Figure 5-3: An odd

SUSY chain

This corresponds to Eqs. (5-18) and (5-21) with the second-order

differential symmetrisation operators

𝑆 = �̂�
+
1 (�̂�

+
1 )
†
,

𝑆 = (�̂�
−
1 )
†
�̂�
−
1 .

SUSY chains can, in principle, be created with an arbitrary

number of intermediate Hamiltonians. If the number of Hamil-

tonians involved is odd, then the chain is linked only by exact

SUSY. However, if the number of Hamiltonians is even, the central

connection must be broken-supersymmetric instead. The spectra

of an even and an odd SUSY chain are illustrated in Figs. 5-2 and
5-3.

5-3 Symmetrisation

The concept of𝒫𝒯 symmetry discussed in Section 5-1 is intriguingly
powerful, yet simple and versatile in applications. It must be

noted, however, that in 1992, already several years before its

introduction, Scholtz, Geyer, and Hahne published a paper on quasi-

Hermitian Hamiltonians in NHQM [84]. Quasi-Hermiticity does not

rely on the strict symmetry conditions posed upon the potentials,

which 𝒫𝒯 symmetry requires, but allows for the occurrence of real

eigenvalues in asymmetric potentials and even in cases with either

pure gain or loss [129]. The latter was observed experimentally a

while ago in anti-𝒫𝒯-symmetric systems [133; 134]. Similar to 𝒫𝒯

symmetry, the applicability of quasi-Hermitian QM is broad and

ranges from scattering problems [63; 135; 136] to constant-intensity

waves [137; 138], which were recently realised experimentally

with pressure waves [139]. Quasi-Hermiticity can also be used to

define a generalised entropy functional for non-Hermitian quantum

systems [59; 140].

There are other types of non-𝒫𝒯-symmetric systems with similar

properties. Anti-𝒫𝒯 symmetry was, for example, observed for

coupled atomic spin waves [141], in electric circuits [142], and

in diffusive systems [143]. Another type of non-𝒫𝒯-symmetric
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potentials is based on the connection between the Zakharov–Shabat

spectral problem and the Schrödinger eigenvalue problem [129;

139; 144–148], which, for example, allows for the construction of

unidirectionally invisible asymmetric potentials [138]. SuchWadati-

type potentials correspond to a specific form of complex potentials,

𝑉(𝑥) = 𝑤
2
(𝑥) + i

𝜕𝑤

𝜕𝑥
,(5-22)

where 𝑤(𝑥) is an arbitrary real function defining the whole system.

In fact, the occurrence of a potential of the form (5-22) can directly

be related to the SUSY potentials (2-70).
The characteristic feature of such non-𝒫𝒯-symmetric potentials

clearly is their lack of any obvious symmetries or any requirements

thereof. Hence they can be applied to situations where gain or loss

are either uncontrolled or even uncontrollable. This could be useful

for quantum transport in chain potentials with gain and loss. Such

systems were recently discussed in the context of 𝒫𝒯-symmetric

quantum dot chains [149]. However, the realisation of stable 𝒫𝒯-

symmetric potentials is demanding and small perturbations will

immediately break the symmetry. A first step towards applications

using BECs with asymmetric potentials has been made by Lunt et

al. [150], who reported on the formation of a steady ground state in

a non-𝒫𝒯-symmetric two-mode BEC with balanced gain and loss.

Due to the non-linear properties of the condensate, the system is

stable with respect to small asymmetries in gain and loss. However,

their approach seems phenomenological and gives the impression

that the occurrence of steady states is coincidental.

Basically, there are two possible approaches to ensure that the

spectrum of an operator is complex-conjugate to itself— that is the

statement of Wigner’s theorem [35; 151]—which are discussed

in the following. However, it should be emphasised once again

that, for the sake of simplicity and clarity, the spectra considered

are assumed to be discrete and non-degenerate. The case with

degeneracy is, for example, described in Ref. [152].
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18
cf. Eq. (2-42)

19
cf. Section 2-4

a) The presence of an anti-unitary symmetry

Consider a non-Hermitian operatorℋ and the corresponding right-

hand eigenvalue equation

ℋ|𝐸⟩ = 𝐸 |𝐸⟩ , (5-23)

where 𝐸 are the complex eigenvalues ofℋ corresponding to the

right-hand eigenstates |𝐸⟩. By introducing an anti-linear
18

operator

𝒜, one finds a right-hand eigenvalue equationℋ|𝐸
′
⟩ = 𝐸

∗
|𝐸
′
⟩ with

|𝐸
′
⟩ = 𝒜 |𝐸⟩ if

19

[𝒜,ℋ] = 0 . (5-24)

Therefore, if𝐸 ∈ ℂ is in the spectrum ofℋ so is𝐸
∗
; the eigenvalues

arise in complex-conjugate pairs. Note that this is particularly true

for real eigenvalues [153] which can be considered as their own

complex conjugates.

An eigenvalue 𝐸 ofℋ is real if the corresponding eigenstate is

invariant under the action of the anti-linear symmetry, i.e.

𝒜|𝐸⟩ = |𝐸⟩ , (5-25)

in which case the symmetry is called exact [83]. To see this, consider

the eigenvalue equation (5-23); by applying 𝒜 and using Eq. (5-24)
one finds

𝒜ℋ|𝐸⟩ =ℋ𝒜|𝐸⟩ = 𝐸
∗
𝒜|𝐸⟩ = 𝒜𝐸 |𝐸⟩ ,

so that the reality of 𝐸 follows from Eq. (5-25).
Now, consider the most simple anti-linear operator 𝒜 = 𝒦

introduced in Section 2-4. In this case, Eq. (5-24) requires that
ℋ
∗
=ℋ and thus thatℋ is real. More general cases are obtained

by combining the complex-conjugation operator with another linear

operator, i.e. 𝒜 = 𝒪𝒦, so that Eq. (5-24) reads

𝒪[𝒦,ℋ] + [𝒪,ℋ]𝒦 = 0 .
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In infinite-dimen-

sional Hilbert spaces

the symmetrisation

operators need not to

be Hermitian [152;

154]; though, they

can be considered to

be Hermitian in the

sense of Eq. (4-33).

For real Hamiltonians the first commutator vanishes, which means

that𝒪must be a unitary symmetry ofℋ. For complex Hamiltonians,

though, both terms must be non-zero. The commutator (5-24) can
then be written as

ℋ𝒪 = 𝒪ℋ
∗
.(5-26)

In physical terms, anti-unitary symmetries can always be related

to a time-reversal invariance [63], as the time-reversal operator

is anti-linear. Some widely known examples for such anti-unitary

symmetries are the already discussed parity-time symmetry with

𝒜 = 𝒫𝒯 and the charge-parity-time symmetry with 𝒜 = 𝒞𝒫𝒯.

b) The concept of symmetrisation

Instead of Eq. (5-23) one can also consider its adjoint equation. The
complex conjugate of 𝐸 then appears naturally on the right-hand

side and one may introduce a linear operator 𝑆 in such a way that

⟨𝐸|ℋ
†
𝑆
†
= ⟨𝐸|𝑆

†
𝐸
∗
.(5-27)

Requiring that the operator 𝑆 satisfies the relation (5-15), a left-
hand eigenvalue equation is found,

⟨𝐸|ℋ = ⟨𝐸|𝐸
∗
,

where |𝐸⟩ = 𝑆 |𝐸⟩ ≠ 0 is a left-hand eigenstate which must not

necessarily be normalised. Since the Hamiltonian considered is not

Hermitian, its eigenbasis is bi-orthogonal as discussed in Section

4-3. This means that the left-hand and right-hand eigenstates which

correspond to the same eigenvalue do not coincide, as it would be

the case for Hermitian operators.

Equation (5-15) shows that the combination of ℋ and 𝑆 is

Hermitian if and only if 𝑆 is Hermitian. However, Eq. (5-15) always
allows for the Hermitian choice (𝑆 + 𝑆

†
)/2 in finite-dimensional

Hilbert spaces
20

[129; 155]. A Hamiltonian satisfying Eq. (5-15)
is thus called symmetrised [140; 156; 157] with respect to the
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cf. Section 4-4

22
This is of particular

importance for more

general cases which

are discussed in Sec-

tion 5-4.

left-hand symmetrisation operator 𝑆 defined by Eq. (5-15). This
corresponds to the method proposed by Jean Gaston Darboux [158;

159], which relates the spectra of the Hamiltoniansℋ andℋ
†
.

The left-hand symmetrisation operator 𝑆 is a metric operator.
21

A relation similar to Eq. (5-15) was found while discussing the

Lorentz group in Section 2-2 a). In Eq. (5-15) the operator 𝑆 plays

the same role as the metric operator 𝜂 of spacetime in Eq. (2-13).
At the same time, the left-hand symmetrisation operator can also be

understood as a symmetry ofℋ within a superoperator framework

[151]. It transforms a right-hand eigenstate ofℋ into a left-hand

eigenstate with the complex-conjugate eigenvalue as discussed in

Section 5-2 a).
Analogously to the left-hand symmetrisation operator, the right-

hand symmetrisation operator 𝑆 satisfies Eq. (5-14) via the left-
hand eigenvalue equation

ℋ
†
|𝐸⟩ = 𝐸

∗
|𝐸⟩ .

The operator 𝑆 transforms left-hand eigenstates into right-hand

eigenstates— that is 𝑆 |𝐸⟩ = |𝐸⟩—thus complementing 𝑆.

The symmetrisation operators play the same role as the cre-

ation and annihilation operators (5-13) and (5-14). Further, the
combination 𝑆𝑆 commutes withℋ by definition,

𝑆𝑆ℋ = 𝑆ℋ
†
𝑆 =ℋ𝑆𝑆. (5-28)

Therefore, 𝑆𝑆 andℋ share the same eigenbasis. However,ℋ and

𝑆𝑆 are not necessarily equal,
22

as it is typically the case in SUSY

QM discussed in Section 5-2. Yet, 𝑆𝑆 is diagonal with respect to

the bi-orthogonal product (4-32); hence, with a suitable choice of

the symmetrisation operators, the eigenvalues of 𝑆𝑆 are unity.

If 𝑆 is invertible, then a Hamiltonian is, if at all, always symme-

trisable from both sides due to

𝑆 ∝ 𝑆
−1
. (5-29)
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cf. Eq. (4-37)

In this case, Eq. (5-28) is equivalent to both Eqs. (5-14) and (5-15)
and can be written as

𝑆ℋ
†
𝑆 =ℋ,(5-30)

which corresponds to Eq. (4-33) and is thus a modification of the

Hermiticity condition (4-2). An operator satisfying Eq. (5-28) is
called either quasi-Hermitian [84; 160], 𝑆-Hermitian [81; 161;

162], pseudo-Hermitian [83; 163–165], crypto-Hermitian [166–168],

or simply generalised Hermitian [169]. The various names that

were coined and used for the properties (5-14), (5-15) and (5-30)
throughout history depend on the properties of the respective

metric operators as described in Ref. [154]. To avoid confusion,

this thesis will stick consequently to the term “symmetrisation”,

which simultaneously is considered as a less restrictive concept in

its own right [157], as it is not necessary for the operators 𝑆 and 𝑆

to be invertible [129; 154].

Further, it should be emphasised that symmetrisation must not

be understood as a generalisation or extension of QM; e.g. see

Refs. [57; 86], where the inner product is redefined by Eq. (4-32).
Here, NHQM is understood as an effective description of open

quantum systems as discussed in Section 4-6. Hence, the Hermitian

inner product of QM must be used to obtain physical quantities. In

this interpretation the left-hand and right-hand states are just parts

of some larger orthogonal states describing a Hermitian system

which contains also the environment;
23

thus, they do not form a

basis on their own, respectively. Equations (5-14) and (5-15) are
then considered as properties of a given open quantum system,

where 𝑆 and 𝑆 are constructed and utilised specifically for the

given Hamiltonian [84]. Therefore, symmetrisation represents a

tool rather than a theory.

As discussed in Section 4-3 a), the only exception for not using

the Hermitian inner product has to be made for EPs, where the

left-hand and right-hand states become self-orthogonal. Hence, for

numerical calculations in the vicinity of an EPs the states should

be normalised using the bi-orthogonal product (4-32) instead.
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Note that the iden-

tity det(𝒰𝒰
−1
) = 1 is

inserted in the third

step.

c) The characteristic polynomial

For finite-dimensional Hilbert spaces there exists another important

property of symmetric and symmetrised systems, which is essential

for the calculations in Chapter 6.
Consider the characteristic equation for the Schrödinger eigen-

value problem (2-39),

det(ℋ−𝐸𝟙) = 0 .

With the cyclic property of the determinant, det(𝐴𝐵) = det𝐴det𝐵

for square matrices 𝐴 and 𝐵, one can easily show that
24

det(ℋ−𝐸𝟙)
∗
= det(ℋ

∗
−𝐸

∗
𝟙)

= det(𝒦ℋ𝒦
−1
−𝐸

∗
𝟙)det(𝒰𝒰

−1
)

= det(𝒰𝒦ℋ𝒦
−1
𝒰
−1
−𝒰𝐸

∗
𝒰
−1
)

= det(ℋ−𝐸
∗
𝟙) (5-31)

for any Hamiltonianℋ satisfying Eq. (5-24) with an anti-unitary

operator𝒜 = 𝒰𝒦, i.e.𝒰 is unitary and𝒦 is the anti-linear complex-

conjugation operator. That is, the complex conjugation acts only

on the eigenvalues 𝐸, which shows that the coefficients of the

characteristic polynomial are real.

A similar consideration can be made for symmetrised systems,

where

det(ℋ−𝐸𝟙)det(𝑆𝑆) = det(𝑆ℋ𝑆−𝑆𝐸𝑆) = det(ℋ
†
−𝐸𝑆𝑆) (5-32)

holds for any Hamiltonianℋ satisfying Eq. (5-14) or Eq. (5-15) with
the symmetrisation operators 𝑆 and 𝑆; if they are invertible and

satisfy 𝑆𝑆 = 𝟙, then Eq. (5-32) is equivalent to the characteristic
polynomial. Further, since det(𝐴

⊺
) = det𝐴 for all square matrices

𝐴, Eq. (5-32) corresponds to the same result as Eq. (5-31). There-
fore, the coefficients of the characteristic polynomial are also real

for a completely symmetrised system.

Due to the fundamental theorem of algebra, the spectra of oper-

ators with real characteristic polynomials consist only of complex-
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cf. Section 4-4 a)

conjugate pairs. In contrast to the symmetrisation conditions (5-14)
and (5-15), which are merely sufficient conditions [129], the reality

of the coefficients of the characteristic polynomial is a necessary

condition to obtain a complex-conjugate spectrum [1; 170], as it

ensures that the kernel of the symmetrisation operators are empty,

thus guaranteeing their invertibility. The consequences of non-

invertible symmetrisation operators with non-empty kernels are

discussed in Section 5-4.
Note that real eigenvalues of a completely symmetric or symme-

trised Hamiltonian are robust with respect to small perturbations

under the assumption that the spectrum is non-degenerate [73].

The reason for this is quite simple: A real eigenvalue can become

complex if and only if it bifurcates into a complex-conjugate pair,

which is not possible if the spectrum is non-degenerate. Moreover,

real eigenvalues also remain real under perturbations which leave

the Hamiltonian quasi-Hermitian
25

[171]. Nevertheless, both the

presence of an anti-linear symmetry, i.e. Eq. (5-24), and the proper-

ties (5-14) and (5-15) of a symmetrised system are insufficient to

guarantee the completeness of the eigenstates [154].

d) Relation between anti-unitary symmetries and

symmetrisation

The concepts of anti-unitary symmetries satisfying Eq. (5-24) and
symmetrisation governed by Eqs. (5-14) and (5-15) seem to be

contradictory. While Eq. (5-24) requires an anti-linear operator

and relates the spectrum ofℋ to its complex-conjugate spectrum,

Eqs. (5-14) and (5-15) require a set of linear operators and relate

the spectra ofℋ and 𝑆ℋ
†
𝑆. Because of Eqs. (5-31) and (5-32), the

spectra ofℋ andℋ
†
coincide, so that every symmetric Hamiltonian

is symmetrisable if the symmetrisation operators are invertible and

vice versa. Hence, the question arises whether there exist any fur-

ther relations between symmetric and symmetrised Hamiltonians.

First, note that Eq. (5-26) closely resembles Eq. (5-15). In

fact, for complex symmetric Hamiltonians, whereℋ
†
=ℋ

∗
, both

equations coincide with 𝒪
†
= 𝑆. To find a corresponding relation
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cf. Section 4-3

for general Hamiltonians, one might recall that the combination of

two anti-linear operators is again linear. Therefore, 𝑆 = 𝒯𝒜 with

some anti-linear operator 𝒯. Equation (5-15) then yields

𝑆ℋ = 𝒯𝒜ℋ=𝒯ℋ𝒜 =ℋ
†
𝑆

under the assumption that Eq. (5-24) holds. The last equality can
only be true if

𝒯ℋ
!
=ℋ

†
𝒯. (5-33)

In general, there is no universal anti-linear operator 𝒯 which

satisfies Eq. (5-33) for arbitrary operators ℋ because 𝒯 ought

to be the operator for Hermitian conjugation. The reason why

there cannot be such an operator can be ascribed to the fact

that Hermitian conjugation requires the transpose of an operator.

However, the action of transposition depends on the basis and is

therefore no physical operation; thus, it cannot be expressed by a

linear operator. If such an operator is assumed to exist, however,

then it would be the symmetry connected with Hermiticity, i.e.

[𝒯,ℋ] = 0

ifℋ
†
=ℋ.

For the specific case of a complex symmetric Hamiltonian, a

complex conjugation is sufficient to satisfy Eq. (5-33), i.e. the
complex-conjugation operator 𝒯 = 𝒦 is the desired anti-linear

operator. In general cases, though, 𝒯 must be constructed for

the Hamiltonianℋ specifically. To do so, one might exploit the

fact that a non-Hermitian Hamiltonian possesses a bi-orthogonal

basis.
26

Therefore, one can express the anti-linear operator in the

form

𝒯 =∑

𝐸

|𝐸⟩𝒦⟨𝐸| (5-34)

which satisfies the relation Eq. (5-33).
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28
Operators possess-

ing two of the three

properties of being

Hermitian, unitary, or

involutory also pos-

sess the third.

For the sake of completeness, a corresponding anti-linear right-

hand operator

𝒯 =∑

𝐸

|𝐸⟩𝒦⟨𝐸|(5-35)

can be defined, which satisfies ℋ𝒯 = 𝒯ℋ
†
, so that 𝑆 = 𝒜𝒯

satisfies Eq. (5-14).
These discussions show that the symmetrisation of a Hamiltonian

is equivalent to generalised𝒫𝒯 symmetry with some linear operator

𝒫 and some anti-linear operator 𝒯 [100; 101; 172], where 𝒫 and 𝒯

are not necessarily the parity and the time-reversal operators as in

Section 5-1. However, this requires 𝑆 and 𝑆 to be unitary; only then,

𝒜 can be anti-unitary and is thus an actual symmetry according to

Wigner’s theorem.
27

Further, if 𝒜 is involutory, then the operators

(5-34) and (5-35) are inverse to each other because of Eq. (5-29).
In fact, due to their Hermiticity, unitary symmetrisation operators

also ought to be involutory.
28

Because of Eq. (5-29), this would also

imply the equality of the left-hand and right-hand symmetrisation

operators. The unitarity of such a metric operator—or the property

of being an involution, respectively—is not really surprising, though,

as it describes a discrete symmetry of the system in this case. For

such an operator the set {𝑆, 𝟙} forms the cyclic group ℤ2 and 𝑆

could thus be considered as a generalisation of the parity operator

𝒫. However, while this argumentation remains rather abstract,

the conditions imposed on such an operator are quite specific;

though, the question if and if so under which conditions such

unitary symmetrisation operators may in general exist is not further

discussed within the scope of this thesis. This argument is, however,

taken up again for the specific case of symmetric potentials in

Section 5-3 e).
Last but not least, it should be noted that the symmetrisation

conditions (5-14) and (5-15) also hold for arbitrary functions ofℋ.

This is, for example, because

𝑆ℋ
2
=ℋ

†
𝑆ℋ = (ℋ

†
)
2
𝑆 ,
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e.g. see Ref. [173]

and thus

𝑆ℋ
𝑛
= (ℋ

†
)
𝑛
𝑆 (5-36)

for 𝑛 ∈ ℕ. As any function of ℋ can be expanded into a Taylor

series, Eq. (5-36) ensures that every order of this expansion is

symmetrisable.

e) Symmetrisation operators

Real spectrum

Due to the property of transforming between left-hand and right-

hand eigenstates, the symmetrisation operators can simply be

written in terms of projection operators (e.g. see Refs. [83; 152]). If

the spectrum ofℋ is real, then a suitable choice of symmetrisation

operators is given by

𝑆 =∑

𝐸

𝑝𝐸 |𝐸⟩⟨𝐸| ,
(5-37)

𝑆 =∑

𝐸

𝑝
𝐸
|𝐸⟩⟨𝐸| , (5-38)

where the coefficients 𝑝𝐸 and 𝑝𝐸 are assumed to be constant.

The operators in Eqs. (5-37) and (5-38) can both be positive

definite, i.e. 𝑝𝐸 > 0 and 𝑝𝐸 > 0, and simultaneously possess unit

traces, i.e. ∑𝐸𝑝𝐸 = 1 = ∑𝐸𝑝𝐸. Thus, in a mathematical sense,

Eqs. (5-37) and (5-38) are “density operators”29 which are associ-

ated with the ensembles {𝑝𝐸, |𝐸⟩} and {𝑝𝐸, |𝐸⟩}. The corresponding

time evolutions are governed by

i
d𝑆

d𝑡
= [ℋ

†
𝑆−𝑆ℋ] , (5-39)

i
d𝑆

d𝑡
= [ℋ𝑆−𝑆ℋ

†
] (5-40)

which can be considered as generalised von Neumann equations.

If the Hamiltonian is left-hand and right-hand symmetrised by

the symmetrisation operators (5-37) and (5-38), then Eqs. (5-39)
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cf. Section 4-6

and (5-40) vanish due to the symmetrisation conditions (5-14) and
(5-15), respectively, so that |𝑆|2 and |𝑆|2 are conserved.

Another possible choice of the coefficients in Eqs. (5-37) and
(5-38) is given by 𝑝𝐸 = 𝑝𝐸 = √𝑝𝐸, where 𝑝𝐸 ≥ 0 and ∑𝐸𝑝𝐸 = 1.

Then,

𝑆𝑆 =∑

𝐸

𝑝𝐸 |𝐸⟩⟨𝐸|(5-41)

is also a “density operator” with respect to the bi-orthogonal product

(4-32). Its time evolution is governed by the von Neumann equation

i
d𝑆𝑆

d𝑡
= [ℋ,𝑆𝑆] ,

i.e. |𝑆𝑆|
2
is also conserved if the Hamiltonian is symmetrised be-

cause of Eq. (5-28).
All of these choices are generalisations of the Hermitian case,

in which left-hand and right-hand eigenstates coincide, depending

only on the inner product one relies on. For a Hermitian system

either the operators (5-37) and (5-38) or the operator (5-41) corres-
pond to the usual definition of the density operator, whereas the

respective other choice must be considered unphysical due to the

coefficients being either squares or square roots of the probability

coefficients, respectively. However, whether or not any of these

operators is, in the end, physically meaningful solely depends on

the probabilities and their interpretations. Since the Hermitian

inner product with respect to the right-hand states is considered to

be physical in this thesis, 𝑆 defined by Eq. (5-37) can be considered
as the distinguished extension of the usual density operator from

QM, which is diagonal with respect to the right-hand eigenstates.

Further, it corresponds to a mixed state reflecting the incomplete

knowledge about the state of the non-Hermitian open quantum

system.
30

Although the classification as density operators may be of some

mathematical interest, from a physical point of view the choices

𝑝𝐸 = 𝑝𝐸 = √𝐸 with the energies 𝐸 of the corresponding states

seem to be more natural. In particular, because they are in agree-

ment with Eqs. (5-16) and (5-17) known from supersymmetric
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e.g. see Ref. [86]

for an overview

32
cf. Eq. (5-39)

non-Hermitian quantum systems. However, in contrast to super-

symmetric systems, in general 𝑆𝑆 ≠ ℋ. Hence, it might also

be reasonable to use the principle of Occam’s razor according

to which the simplest solution might also be the best. Here, the

simplest solution corresponds to the case without any prefactors,

i.e. 𝑝𝐸 = 𝑝𝐸 = 1, so that Eqs. (5-16) and (5-17) are reduced to

𝑆 |𝐸⟩ = |𝐸⟩ ,

𝑆 |𝐸⟩ = |𝐸⟩ .

This convention is used in the remaining thesis and can also be

found in the majority of the mathematical literature on quasi-

Hermiticity.
31

By considering the time derivative of the expectation value of 𝑆

with respect to a right-hand state, that is

i
d

d𝑡
⟨𝐸|𝑆|𝐸⟩ = ⟨𝐸|𝑆ℋ−ℋ

†
𝑆|𝐸⟩ + i⟨𝐸|

d𝑆

d𝑡
|𝐸⟩ , (5-42)

one finds that ⟨𝐸|𝑆|𝐸⟩ is a conserved quantity if Eq. (5-15) holds.32

The statement (5-42) holds in general [83] and is thus also applicable
if the spectrum is not entirely real.

Finally, it should be noted that symmetrisation operators are not

unique [87; 174]. In fact, one can construct an infinite number of

symmetrisation operators for one and the same Hamiltonian [175].

The specific choice of the symmetrisation operators is, however, not

important, as long as the Hamiltonian and the boundary conditions

are the same. Since any operators of the form (5-37) and (5-38)
satisfy Eqs. (5-14) and (5-15), which are necessary for the properties
ofℋ, different choices of the coefficients can be considered as

different gauges.

Complex spectrum

If the spectrum is not entirely real, then the complex eigenvalues

must arise in complex-conjugate pairs, as long as the Hamiltonian

is symmetrised. The corresponding symmetrisation operators are

generalisations of the operators (5-37) and (5-38) [152; 174],
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The coefficients of

the dyadic products

are dropped accord-

ing to the discussions

before.

𝑆 =∑

𝐸0

|𝐸0⟩⟨𝐸0| +∑

𝐸±

(|𝐸+⟩⟨𝐸−| + |𝐸−⟩⟨𝐸+|) ,(5-43)

𝑆 =∑

𝐸0

|𝐸0⟩⟨𝐸0| +∑

𝐸±

(|𝐸+⟩⟨𝐸−| + |𝐸−⟩⟨𝐸+|) ,(5-44)

where 𝐸0 and 𝐸± run over all real and complex-conjugate energies,

respectively.
33

Their evolution is still governed by Eqs. (5-39)
and (5-40). The terms corresponding to the complex part of the

spectrum are non-diagonal and traceless; hence, 𝑆 and 𝑆 are

indefinite. For this reason, there occur states of the Hamiltonian

with negative norm, which must to be considered unphysical [84]

and may be excluded by superselection rules [176]. Nevertheless,

the occurrence of symmetric pairs of complex eigenvalues can

be considered physical in general, as they can be understood as

emission and absorption phenomena [59].

Symmetric potentials

One may assume that there exists an operator 𝒫 with the property

𝒫
2
|𝐸⟩ = e

i𝜑𝑛 |𝐸⟩ ,(5-45)

where |𝐸⟩ can be any eigenstate of a bi-orthogonal basis. Equation

(5-45) defines a parity operator which can be chosen such that

𝒫
2
= 𝟙, i.e. 𝒫 is involutory. One could now conclude that 𝑆𝑆 = 𝒫

2

and thus

𝒫 = 𝑆 = 𝑆 = 𝒫
−1
.(5-46)

This is in agreement with Eq. (5-28) and does not imply that the

Hamiltonianℋ must commute with 𝒫.

Equation (5-46) seems to be a distinguished extension of the

Hermitian case, where the symmetrisation operators (5-37) and
(5-38) also coincide due to the lack of bi-orthogonality. Yet, in a non-
Hermitian quantum system there does not in general exist such a

pair of symmetrisation operators obeying 𝑆 = 𝑆. One may however

find a system in which the states obey 𝒫 |𝐸⟩ ∝ |𝐸⟩, i.e. the left-hand

side equals a left-hand eigenstate up to a phase factor. In this
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cf. Chapter 8

35
cf. Section 5-5

36
in contrast to quasi-

Hermiticity, cf. Sec-

tion 4-4 a)

case, the parity operator 𝒫 is expected to satisfy both Eqs. (5-14)
and (5-15). In combination with an anti-linear operator 𝒯, this

corresponds to 𝒫𝒯 symmetry. As discussed in Section 5-1, a 𝒫𝒯-
symmetric Hamiltonian must possess a real symmetric and an

anti-symmetric imaginary potential, which causes the symmetry in

the states assumed above and also ensures that the spectrum is

complex-conjugate.

An interesting aspect of this discussion is that the parity operator

𝒫 defined by Eq. (5-46) is independent of the eigenstates of the
Hamiltonian; this certainly is not the case for the symmetrisation op-

erators defined by Eqs. (5-43) and (5-44). Therefore, 𝒫𝒯 symmetry

seems to be a distinguished choice and is thus applicable to almost

every kind of physical system. Nevertheless, the requirement of

exactly symmetric potentials can be demanding, especially in the

presence of perturbations in experiments.
34

Another example, in which symmetrisation operators are inde-

pendent of the eigenstates, is given by the differential operators

discussed in Section 5-2 b). Similar to the 𝒫𝒯-symmetric case, they

allow for complex-conjugate spectra but with arbitrary complex

potentials. However, such potentials do not always allow for a

physical interpretation
35

and the corresponding symmetrisation

operators are unbound.

As stated in Section 5-3, this discussion again clearly shows that

symmetrisation should not be thought of as a general theory, but

as a concept which is applied to specific physical systems; that is,

the symmetrisation operators defined in Eqs. (5-43) and (5-44) are
constructed specifically for a particular Hamiltonian.

5-4 Semi-symmetrisation

Until now, only such cases were considered in which the symme-

trisation operators are invertible, i.e. the corresponding metric

is positive semi-definite. In the following, however, the symme-

trisation operators are non-invertible. Nevertheless, the results

discussed in Section 5-3 remain valid because the invertibility of

the symmetrisation operators was not a requirement.
36
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37
cf. Section 5-2 b)

38
cf. Eq. (5-43)

39
That is, if all the re-

quirements from Sec-

tion 5-3 are satisfied.

A similar scenario is described by Nixon and Yang in Ref. [129],

however, with the distinction that their symmetrisation operators

are required to be differential operators; this imposes additional

assumptions on the system, which can be understood with SUSY

chains.
37

Symmetrisation, in contrast, does not require the specific

type of potential (5-22) proposed by Wadati in Ref. [144], which is

not physical in all types of systems. To make this clear, a discussion

on different types of complex potentials follows in Section 5-5.
Now, consider a left-hand symmetrisation operator 𝑆 with zero

determinant, i.e. det𝑆 = 0. Clearly, there is no inverse of 𝑆 and

its kernel is non-empty. Nevertheless, it is still possible to satisfy

Eq. (5-15) if one demands that the elements in the kernel of 𝑆

are exclusively right-hand eigenstates |𝐸⟩ ofℋ. For these states,

Eq. (5-27) holds trivially as38 𝑆 |𝐸⟩ = 0. However, the corresponding
eigenvalues are neither real nor part of a complex-conjugate pair;

they form isolated complex resonances in the spectrum ofℋ.

Since Eq. (5-28) still holds, 𝑆𝑆 can be considered as an identity

with respect to those right-hand eigenstates ofℋ which are not in

the kernel of 𝑆. In contrast, it acts as an “annihilation operator”

for states from the kernel of 𝑆. Although 𝑆 is not the inverse of 𝑆,

they are semi-inverse. The semi-inverse 𝐵 of 𝐴 is defined by the

condition 𝐴𝐵𝐴 = 𝐴 [177], i.e.

𝑆𝑆𝑆 |𝐸⟩ = 𝑆𝑆 ∣𝐸∗⟩ = 𝑆 |𝐸⟩ .

Hence, such a system is called semi-symmetrised.

Semi-symmetrised operators possess the properties of sym-

metrised operators on a subspace spanned by eigenstates of the

Hamiltonian which are not in the kernels of the symmetrisation

operators. The dimension of this subspace is given by rank𝑆. With

respect to the definition (5-43), it is obvious that for any left-hand
eigenstate excluded from the sums, the corresponding right-hand

eigenstate— because of bi-orthogonality—must be part of the

kernel of the left-hand symmetrisation operator. The same applies

to the definition (5-44) of the right-hand symmetrisation operator.

Since the rank of the symmetrisation operators can take any value

between 1 and the full rank, any operator with a discrete number

of real eigenvalues can be considered as semi-symmetrised,
39

even
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40
cf. Section 6-4

if the spectrum is not entirely discrete. For this reason, one can

apply symmetrisation to a specific subspace, for example obtained

by means of some approximation,
40

without the need to care for the

entirety of the spectrum. A specific example of a physical system

that is solely semi-symmetrisable is given by the two-mode system

with balanced gain and loss for generalised complex potentials,

which is discussed in Section 6-1 c).

An illustrative example

To conclude this section, the previous discussions on semi-sym-

metrisation are illustrated with an example of a non-invertible

symmetrisation operator 𝑆 for the non-Hermitian matrix

ℋ=
⎛⎜⎜⎜⎜

⎝

3 0 0

i 1 0

0 0 i

⎞⎟⎟⎟⎟

⎠

. (5-47)

The eigenvalues of the matrix (5-47) and their corresponding non-

normalised right-hand eigenvectors read

𝐸1 = 3 , ∣𝐸1⟩ = (2, i, 0)
⊺
, (5-48)

𝐸2 = 1 , ∣𝐸2⟩ = (0, 1, 0)
⊺
, (5-49)

𝐸3 = i , ∣𝐸3⟩ = (0, 0, 1)
⊺
. (5-50)

A suitable left-hand symmetrisation operator is given by

𝑆 =
⎛⎜⎜⎜⎜

⎝

1 i 0

−i 2 0

0 0 0

⎞⎟⎟⎟⎟

⎠

, (5-51)

so that Eq. (5-15) is satisfied,

𝑆ℋ =
⎛⎜⎜⎜⎜

⎝

2 i 0

−i 2 0

0 0 0

⎞⎟⎟⎟⎟

⎠

=ℋ
†
𝑆 .

Note that the matrix (5-51) is not invertible because det𝑆 = 0.
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Obviously, not all eigenvectors in Eqs. (5-48) to (5-50) are ortho-
gonal with respect to the ordinary inner product. The eigenvectors

of the real eigenvalues are, however, orthogonal with respect to

the modified inner product

⟨𝐸2∣𝑆𝐸1⟩ =
1

2

⎛⎜⎜⎜⎜

⎝

0

1

0

⎞⎟⎟⎟⎟

⎠

⋅
⎛⎜⎜⎜⎜

⎝

1

0

0

⎞⎟⎟⎟⎟

⎠

= 0 ,

whereas ⟨𝐸2|𝐸1⟩ = i. The eigenvector |𝐸3⟩ of the complex eigen-

value is in the kernel of 𝑆, i.e. 𝑆 |𝐸3⟩ = 0, so that the original

eigenvalue equation

ℋ𝑆∣𝐸3⟩ = 𝐸
∗
3𝑆 ∣𝐸3⟩

holds trivially.

The corresponding right-hand symmetrisation operator can be

found similarly,

𝑆 =
⎛⎜⎜⎜⎜

⎝

2 −i 0

i 1 0

0 0 0

⎞⎟⎟⎟⎟

⎠

,(5-52)

so that Eq. (5-14) is satisfied,

ℋ𝑆 =
⎛⎜⎜⎜⎜

⎝

6 −3i 0

3i 2 0

0 0 0

⎞⎟⎟⎟⎟

⎠

=ℋ
†
𝑆 ,

and

𝑆𝑆 =
⎛⎜⎜⎜⎜

⎝

1 0 0

0 1 0

0 0 0

⎞⎟⎟⎟⎟

⎠

.(5-53)

It is easy to check that the matrices (5-51) and (5-52) transform
between the left-hand and right-hand eigenvectors of the real

eigenvalues, respectively.

Note that the choices for the matrices 𝑆 and 𝑆 are not unique

and not all of them are semi-inverses as in Eq. (5-53). For example,
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41
e.g. see Ref. [179]

42
cf. Ref. [180] and

references therein

the matrix

𝑆
′
=
⎛⎜⎜⎜⎜

⎝

1 −i 0

i −2 0

0 0 0

⎞⎟⎟⎟⎟

⎠

,

also satisfies Eq. (5-15), but it is not semi-inverse to Eq. (5-52).

5-5 Physical complex potentials

In Sections 5-2 to 5-4 different concepts for obtaining complex-

conjugate—physical— spectra in non-Hermitian quantum systems

were discussed. Apart from the mathematical considerations,

it is important to consider the types of potentials which can be

treated with these concepts. 𝒫𝒯 symmetry, for example, allows for

arbitrary real and imaginary potentials, as long as they are real

symmetric and imaginary anti-symmetric [178].

The Wadati-type potentials of the form (5-22), on the other hand,

do not require such symmetries. However, they do not always allow

for a physical interpretation, which makes them unsuitable for

describing real, open physical systems via complex potentials. An

example of a system which yields a physical interpretation of such

potentials is given by the pressure waves in Ref. [139]. Yet, in the

case of BECs which are localised in distinct potential wells,
41

a

differential imaginary potential cannot be interpreted directly. This

is because for BECs the imaginary part of the potential describes in

and out-coupling of particles; thus, a Wadati-type potential would

1) describe in and out-coupling of particles in the same well,

2) require gain and loss to depend locally on the changes of the

real potential.

Both of these reasons make such potentials hard to interpret phys-

ically and they can also hardly be realised in a quantum system.
42

In this thesis the focus lies on open quantum systems described

by Hamiltonians with complex multi-well potentials, which effect-

ively represent gain and loss in each well, respectively. In general,

Physical complex potentials 101



43
cf. Appendix E

44
cf. Section 4-5 b)

45
cf. Section 5-3 d)

such systems correspond to discrete matrix models, i.e. the operat-

ors are represented by finite-dimensional matrices.
43

Further, the

Hamiltonians of such models are complex symmetric, i.e.ℋ
⊺
=ℋ,

thus being real apart from their diagonal. This involves no loss of

generality, since any matrix can be transformed into a complex

symmetric form [89] and the set of bi-orthogonal states of a complex

symmetric matrix is complete.
44

For such systems Eq. (5-24) coincides with the Hermiticity

condition if 𝒜 =𝒦 because

[ℋ,𝒦] = [ℋ−ℋ
∗
]𝒦 = [ℋ−ℋ

†
]𝒦 = 0 .

Thus, any anti-unitary symmetry with 𝒜 ∝𝒦 can be considered as

a generalisation of Hermiticity.
45

Another interesting property arises for symmetrisation in the

context of complex potentials. If one considers Eq. (5-15) as a prop-
erty of a given system with an imaginary potential, then Eq. (5-14)
is a property of the same system with the negative imaginary poten-

tial. In other words, if the system is symmetrised from both sides

simultaneously, then there exist two suitable gain-loss distributions,

each corresponding to one symmetrisation operator. The inversion

of gain and loss corresponds to time reversal, so that

ℋ=𝒯ℋ
†
𝒯 =ℋ

⊺(5-54)

with the involutory time-reversal operator 𝒯. By plugging this into

Eq. (5-15) and comparing the result to Eq. (5-14), one finds

𝑆 = 𝒯𝑆𝒯 = 𝑆
∗
.(5-55)

This is a consequence of the dual character ofℋ andℋ
†
, which

in the case of complex symmetric Hamiltonians is defined with

respect to the complex conjugate rather than the Hermitian adjoint.

An interesting discussion on this duality can be found in Ref. [151],

where it is shown that the left-hand eigenstates of a quantum system

evolve backwards in time compared to the right-hand eigenstates

and vice versa.
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cf. Chapter 6

47
cf. Chapter 7

Note that the properties (5-54) and (5-55) are consistent with
both choices of the inner product discussed in Section 4-6 a). Fur-
ther, Eq. (5-55) can also be extracted from the general definitions

(5-18) to (5-21).

a) Numerical calculation of symmetrisation

operators

While Eqs. (5-14) and (5-15) can be solved analytically in simple

cases,
46

they are either hard or even unfeasible to treat in larger

and more complicated systems; it may even be entirely impossible in

non-linear quantum systems.
47

Hence, it is reasonable to resort to

numerical calculations. To solve Eqs. (5-14) and (5-15) numerically,

it is useful to rewrite them as a matrix equation of the form 𝐶⋅𝑠 = 0,

where 𝑠 contains all components of the respective symmetrisation

operator and 𝐶 is a coefficient matrix. In the following, the coeffi-

cient matrices for discrete left-hand and right-hand symmetrisation

operators are derived.

For a quantum system described by a discrete matrix Hamilton-

ianℋ∈ℂ
𝑁×𝑁

, the left-hand symmetrisation condition (5-15) can
be written as

⎛⎜⎜⎜⎜

⎝

∑𝑛 [ℋ𝑛1𝑆1𝑛 −ℋ
∗
𝑛1𝑆𝑛1] ⋯ ∑𝑛 [ℋ𝑛𝑁𝑆1𝑛 −ℋ

∗
𝑛1𝑆𝑛𝑁]

⋮ ⋱ ⋮

∑𝑛 [ℋ𝑛1𝑆𝑁𝑛 −ℋ
∗
𝑛𝑁𝑆𝑛1] ⋯ ∑𝑛 [ℋ𝑛𝑁𝑆𝑁𝑛 −ℋ

∗
𝑛𝑁𝑆𝑛𝑁]

⎞⎟⎟⎟⎟

⎠

= 0 (5-56)

with 𝑛 = 0,… ,𝑁 − 1. Equation (5-56) can be understood as the

𝑁
2
determining equations for the matrix elements of the left-hand

symmetrisation operator 𝑆. They can also be written as the matrix

equation

𝐶 ⋅ 𝑠 = 0 , (5-57)

where 𝑠𝑁𝑘+𝑙 = 𝑆𝑘𝑙 is the vector of all elements of 𝑆 and

𝐶𝑁𝑙+𝑘,𝑁𝑙+𝑛 =ℋ𝑛𝑘 , (5-58)

𝐶𝑁𝑙+𝑘,𝑁𝑛+𝑘 = −ℋ
∗
𝑛𝑙

(5-59)
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with 𝑘, 𝑙 = 0,… ,𝑁−1; hence, for 𝑛 = (𝑁𝑙−𝑘)/(𝑁−1) the coefficient

reads

𝐶𝑁𝑙+𝑘,𝑁𝑛+𝑘 =ℋ𝑛𝑘 −ℋ
∗
𝑘𝑙 .

Analogously, by using Eq. (5-14) one finds

𝐶 ⋅ 𝑠 = 0 ,(5-60)

where 𝑠𝑁𝑘+𝑙 = 𝑆𝑘𝑙 contains the matrix elements of the right-

hand symmetrisation operator. The elements of the corresponding

coefficient matrix are then given by

𝐶𝑁𝑙+𝑘,𝑁𝑛+𝑘 =ℋ𝑙𝑛 ,(5-61)

𝐶𝑁𝑙+𝑘,𝑁𝑙+𝑛 = −ℋ
∗
𝑘𝑛 .(5-62)

The coefficient matrices can easily be obtained numerically

by initiating a pair of zero matrices followed by looping over the

indices 𝑛, 𝑘, and 𝑙 and adding Eqs. (5-58) and (5-59) and Eqs. (5-61)
and (5-62) to the respective matrix elements. To check whether a

Hamiltonian is symmetrisable or not, it is sufficient to calculate

the determinant of the coefficient matrix of the symmetrisation

operator; Eqs. (5-57) and (5-60) yield solutions only if det𝑆 = 0

and det𝑆 = 0, respectively. In these cases, Eqs. (5-57) and (5-60)
can be solved by numerical algorithms provided, for example, by

the ARPACK library [181; 182].
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Im𝑉

Figure 6-1: A multi-

well potential with

gain and loss

1
cf. Appendix E

Linear systems 6
In the following, the concept of symmetrisation discussed in Sec-

tion 5-3 is applied to complex multi-mode potentials, where the

imaginary part describes gain and loss in each well, respectively,

as shown in Fig. 6-1. Hence, the Schrödinger equation (2-39) must

be solved for linear but non-Hermitian discrete Hamiltonians, for

which the foundations were laid in Chapter 4; this specifically
means that the corresponding Hilbert spaces are finite-dimensional.

Further, extended potentials, which in general correspond to infin-

ite-dimensional Hilbert spaces, are briefly considered in Section 6-4.
The generalisation of symmetrisation to non-linear non-Hermitian

systems is discussed in Chapter 7.

6-1 Two-mode systems

The most simple discrete, open quantum systems are given by non-

Hermitian two-mode matrix models. In such systems the eigenval-

ues and eigenstates of the Hamiltonian can easily be calculated

explicitly. Therefore, a two-mode matrix model provides a suitable

basis to start investigating the occurrence of balanced gain and

loss in open quantum systems.

Two-mode systems are well studied both for 𝒫𝒯-symmetric

potentials [106; 183–187] and recently also for potentials with

arbitrary gain and loss [188; 189]. The most general symmetrisation

operator for two-dimensional systems is also known already [88;

155]. In the following, the two-mode system is discussed yet again

but with respect to symmetrisation. Though, a short overview of

the 𝒫𝒯-symmetric two-mode model is inevitable in this context.

In contrast to the— in general infinite-dimensional—matrix

representations discussed in Appendix B-2, the matrix models

considered here correspond to the finite-dimensional tight-binding

approximation
1
of the Schrödinger equation in a complex multi-
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2
e.g. see [193]

3
It could thus effect-

ively be eliminated by

the choice 𝐽 = 1.

4
Depending on the

system, this can be

either an exchange of

energy or matter.

well potential as shown in Fig. 6-1 [190–192]. Such a matrix model

can, for example, also be understood as the mean-field limit of a

many-body system,
2
which is a suitable approximation even in the

presence of a complex potential [183; 194; 195].

a) 𝒫𝒯-symmetric two-mode model

Probably the simplest 𝒫𝒯-symmetric Hamiltonian is given by

ℋ= ⎛⎜
⎝

i𝛾 −𝐽

−𝐽 −i𝛾
⎞⎟
⎠

(6-1)

which describes an open two-mode system of the form shown in

Fig. 6-1. The two modes are coupled by the parameter 𝐽, which

in the following serves as a unit for the energies.
3
The gain-loss

parameter 𝛾 corresponds to an anti-symmetric imaginary potential

which effectively describes interactions of the two-mode system

with an environment.

It is immediately clear that the Hamiltonian (6-1) satisfies the
condition (5-1) for 𝒫𝒯 symmetry, where 𝒫 corresponds to the

transposition with respect to the second diagonal and 𝒯 is just a

complex conjugation. The eigenvalues are readily obtained,

𝐸±
𝐽
= ±√1− (

𝛾

𝐽
)
2

.(6-2)

For |𝛾| < 𝐽 the square root yields real values, so the 𝒫𝒯 symmetry

is exact. In this region the gain at the in-coupling mode, the

loss at the out-coupling mode, and the current between them are

balanced. However, for |𝛾/𝐽| > 1 the eigenvalues become complex-

conjugate, which indicates that the 𝒫𝒯 symmetry is now broken.

This characteristic scenario is shown in Fig. 6-2 and illustrates all

features of 𝒫𝒯-symmetric spectra in a compact manner.

Figure 6-2 is an example of a spontaneous symmetry breaking.

The physical reason behind it is that the two-mode system is unable

to maintain the current
4
which is required to keep the two modes in

balance. That is, the energy eigenvalues become complex and thus

the norms of their corresponding states are no longer conserved
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Figure 6-2: Eigen-

values of the 𝒫𝒯-

symmetric two-mode

model (6-1) as a func-
tion of the gain-loss

parameter 𝛾. If the

gain-loss strength is

small enough the two-

mode model is ex-

actly 𝒫𝒯-symmetric,

i.e. the eigenvalues

are real. If the in-

teraction with the en-

vironment increases

the 𝒫𝒯 symmetry is

broken and the eigen-

values become com-

plex-conjugate.

−2 −1 0 1 2

𝛾/𝐽

−2

−1

0

1

2

𝐸
/
𝐽

Re𝐸− Re𝐸+

−2 −1 0 1 2

𝛾/𝐽

Im𝐸− Im𝐸+

in time; that is, the modes are no longer time-reversal invariant.

The 𝒫𝒯-symmetric and the broken 𝒫𝒯-symmetric solutions form

a tangent bifurcation, i.e. they are connected by a branch point

created by the complex square root function (6-2) at |𝛾/𝐽| = 1. This
corresponds to an EP of second order as introduced in Section

4-3 a); in fact, the topology shown in Fig. 4-1 is exactly that of the
square root function in the complex plane.

The normalised time-independent eigenstates which correspond

to the solutions (6-2) for |𝛾/𝐽| ≤ 1 read

𝜓±(0) =
1

√2
⎛⎜
⎝

e
i𝜑

e
−i𝜑

⎞⎟
⎠
, (6-3)

where

𝜑 = −
1

2
arcsin(

𝛾

𝐽
) . (6-4)

As long as the eigenvalues 𝐸± are real, the time-dependent eigen-

states

𝜓±(𝑡) = 𝜓±(0) e
−i𝐸±𝑡

are steady states and their norms are conserved. Moreover, the

norms of the single modes are always balanced in the𝒫𝒯-symmetric

regime, i.e. |𝜓
(1)
± |

2
= |𝜓

(2)
± |

2
. Though, if the energy eigenvalues
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5
cf. Eq. (6-1)

become complex, their imaginary parts cause the norms to increase

or decrease in time.

Note that the solutions (6-3) can also be extended into the broken
𝒫𝒯-symmetric regime [179]. Although real values of the phase

(6-4) no longer exist for |𝛾/𝐽| > 1, the arcus sine function can be

extended into the complex plane via

arcsin(�̂�) = −i ln(i�̂� ± √1 − �̂�2) =
𝜋

2
− i ln(�̂� ± √�̂�2 − 1) ,

where �̂� = 𝛾/𝐽 ∈ ℝ is the “normalised” gain-loss parameter. Then,

the components of Eq. (6-3) read

𝜓
(1)
± (0) = √�̂� ± √�̂�2 − 1

e
−i𝜋4

√2
,

𝜓
(2)
± (0) = √�̂� ∓ √�̂�2 − 1

e
i𝜋4

√2
,

i.e. the norms of the time-independent states are modified.

b) Steady states in non-Hermitian two-mode

systems

Now, consider the more general
5
matrix Hamiltonian

ℋ= ⎛⎜
⎝

𝜖 + i𝛾(1 + 𝛿) −𝐽

−𝐽 −𝜖− i𝛾(1 − 𝛿)
⎞⎟
⎠
,(6-5)

which is complex symmetric for 𝐽 ∈ ℝ. Due to the gauge freedom

of the energy, the three real parameters— the on-site potential

parameter 𝜖, the gain-loss parameter 𝛾, and the asymmetry para-

meter 𝛿—are sufficient to describe any two-dimensional, complex

symmetric matrix Hamiltonian. The parameter 𝛿 causes the po-

tential to be asymmetric, i.e. for 𝛿 = 0 the diagonal of Eq. (6-5)
is anti-symmetric, while for 𝛿 ≠ 0 the imaginary part becomes

asymmetric.

The characteristic polynomial of the Hamiltonian (6-5) reads

det(ℋ−𝐸𝟙) = 𝐸
2
+ i2𝛾𝛿𝐸−𝐽

2
− 𝛾

2
𝛿
2
− (𝜖 + i𝛾)

2 !
= 0 .(6-6)
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6
i.e. the two sites be-

come equivalent ener-

getically

To determine whether there exist any steady states, one may start

by assuming that Eq. (6-6) yields a real solution 𝐸 ∈ ℝ. Then,

Eq. (6-6) can be divided into its real and imaginary parts,

𝐸
2
− [𝐽

2
+ 𝜖

2
− 𝛾

2
(1 − 𝛿

2
)] = 0 , (6-7)

𝛾(𝜖 − 𝛿𝐸) = 0 . (6-8)

Equation (6-7) yields two non-trivial real solutions if the term in

the square brackets is positive. This is always the case if |𝛾| is

small enough in comparison with the transition strength 𝐽 and

the on-site potential parameter |𝜖|. Physically, this means that the

interactions between the two-mode system and its environment

must be sufficiently weak. However, Eq. (6-8) must also be satisfied.

In fact, Eq. (6-8) completely determines the type of the system.

To give an example, for 𝛾 = 0 the Hamiltonian (6-5) is Hermitian,

so its eigenvalues are necessarily real. In this case, Eq. (6-7) yields
two real solutions and Eq. (6-8) holds independently. For 𝛾 ≠ 0,
however, the Hamiltonian (6-5) is non-Hermitian. Yet, in this case

there also exists a distinguished type of system: With 𝛿 = 0 the

potential is anti-symmetric and Eq. (6-8) requires either 𝜖 or 𝛾 to
be zero as well. For 𝜖 = 0 the real potential vanishes,

6
so that the

Hamiltonian corresponds to Eq. (6-5), which is 𝒫𝒯-symmetric, and

possesses two real solutions if |𝛾/𝐽| < 1 as discussed in Section

6-1 a).
If all three parameters 𝜖, 𝛾, and 𝛿 are non-zero, the potential is

always asymmetric and Eq. (6-8) yields only one solution. Therefore,
there exists at most one stationary state of the Hamiltonian (6-5)
with a real eigenvalue 𝐸. Thus, two stationary states can occur

only in the trivial Hermitian case or if the system is 𝒫𝒯-symmetric.

Therefore, the spectrum of the 𝒫𝒯-symmetric two-mode model is

discussed in Section 6-1 a) for reference.
Note, however, that this behaviour is not restricted to discrete

systems. If the two-mode model is replaced by a continuous system

with a double-delta potential as in Appendix F, one finds that the

number of steady states in an asymmetric extended potential is also

limited in contrast to the 𝒫𝒯-symmetric case [185], for example.

This can be seen by inspecting Eqs. (F-7) and (F-8): The left-hand
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7
cf. Section 5-3 c)

sides are independent of the distance 𝑎 between the two delta

peaks, while the right-hand sides are not. Therefore, a real-valued

solution can exist only if a specific relation between 𝜖1, 𝜖2, 𝛾1, 𝛾2,

and 𝑎 is satisfied, where 𝑎 takes the role of the coupling parameter

𝐽. The discussion on symmetrisation in spatially extended systems

is continued in Section 6-4.

c) Two-mode models with arbitrary gain and loss

Although Sections 6-1 a) and 6-1 b) show that a non-𝒫𝒯-symmetric

Hamiltonian can possess only a single real eigenvalue, it is nev-

ertheless worthwhile to explore the concept of symmetrisation

introduced in Chapter 5 in this context; in particular, this provides

an excellent application for semi-symmetrisation.

While the form (6-5) of a non-Hermitian two-mode Hamiltonian

is suitable to describe perturbations from the 𝒫𝒯-symmetric Hamil-

tonian (6-1) with the parameter 𝛿, in the following, the generic

form

ℋ= ⎛⎜
⎝

𝜖1 + i𝛾1 −𝐽

−𝐽 𝜖2 + i𝛾2

⎞⎟
⎠

(6-9)

with 𝜖1 = 𝜖, 𝜖2 = −𝜖, 𝛾1 = 𝛾(1 + 𝛿), and 𝛾2 = −𝛾(1 − 𝛿) is used.

Hence, the parameters 𝜖1 and 𝜖2 are not independent and only

their difference is physically meaningful.

The reality of the characteristic polynomial of the Hamiltonian

(6-9) allows for checking efficiently whether the Hamiltonian is

symmetrisable or not. This evaluation yields the two conditions

𝛾1 + 𝛾2 = 0 ,(6-10)

𝜖1𝛾2 + 𝛾1𝜖2 = 0 .(6-11)

Of these, Eq. (6-10) is satisfied only for an anti-symmetric imaginary

potential and thus by a 𝒫𝒯-symmetric Hamiltonian. Since the

reality of the characteristic polynomial is a sufficient condition for a

real or complex-conjugate spectrum,
7
one can conclude that there

are no asymmetric potentials with entirely real spectra, which is in
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agreement with the results of Section 6-1 b). The symmetrisation

condition (5-15), however, is not a sufficient condition; thus, it might

be possible to obtain a system with at least some real eigenvalues,

that is. Therefore, the symmetrisation or semi-symmetrisation of

the Hamiltonian (6-9) is investigated in the following.

In two-dimensional spaces the symmetrisation operator may

conveniently be written in terms of the Pauli matrices (2-19) via

𝑆 =

3

∑

𝑛=0

𝑆n𝜎n , (6-12)

where 𝜎0 = 𝟙 and 𝑆n ∈ ℝ, so that 𝑆 is Hermitian. With Eqs. (6-9)
and (6-12) the symmetrisation condition (5-15) yields

⎛⎜⎜⎜⎜⎜⎜⎜

⎝

𝛾1 + 𝛾2 0 0 𝛾1 − 𝛾2
0 𝛾1 + 𝛾2 𝜖1 − 𝜖2 0

0 −(𝜖1 − 𝜖2) 𝛾1 + 𝛾2 −2𝐽

𝛾1 − 𝛾2 0 2𝐽 𝛾1 + 𝛾2

⎞⎟⎟⎟⎟⎟⎟⎟

⎠

⎛⎜⎜⎜⎜⎜⎜⎜

⎝

𝑆0
𝑆1
𝑆2
𝑆3

⎞⎟⎟⎟⎟⎟⎟⎟

⎠

= 0 . (6-13)

A solution for this equation exists only if the determinant of the

coefficient matrix vanishes, i.e.

(𝛾1 + 𝛾2)
2
[(𝛾1 + 𝛾2)

2
− (𝛾1 − 𝛾2)

2
+ 4𝐽

2
] + (𝜖1 − 𝜖2)

2
[(𝛾1 + 𝛾2)

2
− (𝛾1 − 𝛾2)

2
] = 0 .

(6-14)
For a symmetric potential with 𝜖1 = 𝜖2 and 𝛾1 = −𝛾2 = 𝛾 both terms

in Eq. (6-14) vanish identically. Then, the solution of Eq. (6-13) is
given by the left-hand symmetrisation operator

𝑆 = ⎛⎜
⎝

𝑆0 𝑆1 − i
𝛾
𝐽𝑆0

𝑆1 + i
𝛾
𝐽𝑆0 𝑆0

⎞⎟
⎠
, (6-15)

which has the two degrees of freedom 𝑆0 and 𝑆1. The correspond-

ing right-hand symmetrisation operator can simply be obtained by

changing the sign of 𝛾, as this corresponds to the adjoint Hamilton-

ian. Hence, 𝑆 = (𝑆)
†
. For 𝑆0 = 0 and 𝑆1 = 1 the parity operator 𝒫

is retrieved.

Two-mode systems 111



For 𝐽 ≠ 0 there is no other choice of parameters for which the

first term in Eq. (6-14) vanishes. However, by choosing

𝜖1 − 𝜖2 = ±(𝛾1 + 𝛾2)√−
𝐽2

𝛾1𝛾2
− 1(6-16)

with −𝐽
2
< 𝛾1𝛾2 < 0, the condition (6-14) is satisfied. The lower

bound of the product 𝛾1𝛾2 stems from the fact that—under the

assumption that only either 𝛾1 or 𝛾2 is non-zero—Eq. (6-14) can
be satisfied if and only if the modes are decoupled, i.e. 𝐽 = 0, or if

there is no gain or loss at all, i.e. 𝛾1 = 𝛾2 = 0, which contradicts the

assumption. The upper bound is required for the expression under

the square root to be negative, so that the difference of the on-

site potential parameters is a real quantity. Hence, a symmetrised

operator of the form (6-9) always requires the presence of both gain
and loss. This appears to be intuitive, particularly if one recalls that

real energies describe stationary states in open quantum systems.

However, as shown in Ref. [129], there exist potentials in unbound

systems which do not require gain at all; this is hard to grasp from

a physical point of view.

From a mathematical point of view, there is, in principle, an

infinite number of systems which can satisfy the relation (6-16),
as it only requires a specific difference in the on-site potential

parameters. Due to the possibility to freely gauge the energy

scale, though, just two physically distinct situations have to be

considered. They correspond to a systemℋ with parameters 𝜖1
and 𝜖2 set according to Eq. (6-16) and its time-reversed counterpart

ℋ
†
. In the following, a system is considered to evolve forwards in

time if particles or energy in the system move from left to right;

consequently, if the particles are moving from right to left, the

system evolves backwards in time.

By plugging Eq. (6-16) into Eq. (6-13), the corresponding sym-

metrisation operator can be calculated, which in matrix form reads

𝑆 =
⎛⎜⎜⎜⎜

⎝

−
𝐽
𝛾1

−i ∓ √−
𝐽2

𝛾1𝛾2
− 1

i ∓ √−
𝐽2

𝛾1𝛾2
− 1

𝐽
𝛾2

⎞⎟⎟⎟⎟

⎠

𝑆2 .
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Figure 6-3: Real

and imaginary parts

of the eigenvalues

(6-17) for Eq. (6-16)
with 𝜖1 ≥ 𝜖2. The

different parametri-

sations are given a)

by Eq. (6-18) and b)

by Eq. (6-20). There
exists one real and

one complex solution,

respectively, as long

as the Hamiltonian

can be symmetrised;

the shaded regions

indicate where this is

no longer possible.
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𝛾/𝐽

b)

8
The corresponding

systems evolve for-

wards and backwards

in time, respectively.

In contrast to Eq. (6-15), this symmetrisation operator possesses

only one single degree of freedom 𝑆2. Further, it is non-invertible as

det𝑆 = 0 hold independently of the choice of 𝑆2. Hence, rank𝑆 = 1,

which immediately implies that there must exist one real eigenvalue

𝐸. By shifting the energy scale suitably, this real eigenvalue

can take the form 𝐸 = 0, so that its existence is determined by

detℋ = 0; the solutions of this condition are given by Eq. (6-16).
The situation can thus be stated as follows: There are two physically

distinct systems with 𝜖1 > 𝜖2 and 𝜖1 < 𝜖2, respectively, which

satisfy Eq. (6-16). For both these systems there exist two imaginary

potentials
8
𝛾1 > 𝛾2 and 𝛾1 < 𝛾2, respectively, so that each system

has one real eigenvalue. Semi-symmetrisation thus connects the

four Hamiltoniansℋ+,ℋ−,ℋ
†
+, andℋ

†
−, where the index refers to

the sign in Eq. (6-16).
The general solutions for the eigenvalues of the two-mode system

are given by

𝐸± =
1

2
[(𝜖1 + 𝜖2) + i(𝛾1 + 𝛾2) ±

√[(𝜖1 − 𝜖2) + i(𝛾1 − 𝛾2)]
2
+ 4𝐽2] .

(6-17)
These solutions 𝐸+ and 𝐸− are plotted in Fig. 6-3 for different

parametrisations of gain and loss. Figure 6-3a) shows a system
with asymmetric gain and loss parametrised by

𝛾1 = 2𝛾 , 𝛾2 = −
𝛾

2
. (6-18)
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9
Precisely they are

stretched by a factor

of 1.25 at 𝛾 = 0.

The on-site potential parameters are chosen symmetrically via

𝜖1 = −𝜖2 =
𝛥𝜖

2
,(6-19)

where 𝛥𝜖 corresponds to the difference (6-16); thus, 𝜖1 +𝜖2 = 0 in
Eq. (6-17). As discussed above, there is an ambiguity in the sign

of 𝛥𝜖. In the following, this freedom is used to choose the sign

such that 𝜖1 ≥ 𝜖2. For |𝛾/𝐽| < 1 the spectrum resembles the 𝒫𝒯-

symmetric case shown in Fig. 6-2, but with the imaginary part of

𝐸+ rotated about the origin at 𝛾 = 0, while 𝐸− remains entirely

real. The real parts of 𝐸+ and 𝐸− are still symmetric but they

no longer form a unit circle; instead, they appear elliptic.
9
In the

domain |𝛾/𝐽| > 1 there exist no symmetrised solutions at all, since

Eq. (6-16) becomes imaginary and cannot be used to determine the

on-site potential parameters anymore. Last but not least, there

are no EPs at |𝛾/𝐽| = ±1, i.e. no bifurcations occur as in the 𝒫𝒯-

symmetric case because the imaginary part of 𝐸+ is non-zero for

𝛾 ≠ 0.

In Fig. 6-3a) another parametrisation of asymmetric gain and

loss is shown, which is given by

𝛾1 = 𝛾+
1

2
, 𝛾2 = −𝛾+

1

2
(6-20)

with Eq. (6-19), so that 𝛾1 + 𝛾2 = 1. The corresponding solutions

are again deformed in comparison with the 𝒫𝒯-symmetric case in

Fig. 6-2. However, there no longer exist solutions on the interval

−1/2 ≤ 𝛾/𝐽 ≤ 1/2, in which the gain-loss parameters (6-20) possess
the same sign; i.e. for 𝛾 < 0 there is only gain and for 𝛾 > 0 there

is only loss. For |𝛾/𝐽| > 1 there are no solutions either, due to the

same reasons discussed above. In the remaining parameter regions

there are solutions with either Im𝐸+ = 0 for 𝛾 < 0 or Im𝐸− = 0

for 𝛾 > 0. The offset of the respective other imaginary parts are

given by i(𝛾1 + 𝛾2), which vanishes only in the Hermitian and 𝒫𝒯-

symmetric cases. Further, the real parts of the energy eigenvalues

diverge at 𝛾 = ±𝐽/2. By approaching the regions where only either

gain or loss occurs, the parameters 𝛾1 and 𝛾2 become increasingly

unsuitable for sustaining the properties imposed onto the system

by symmetrisation. This is reflected by the divergence of the term
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Figure 6-4: Real

and imaginary parts

of the eigenvalues

(6-17) as functions

of 𝛾1 and 𝛾2, where

𝜖1 ≥ 𝜖2 are determ-

ined by Eq. (6-16).
The two solid lines

represent the two pa-

rametrisations used

in Fig. 6-3. Further,

black dashed lines

indicate the regions

in which the system

is symmetrised and

white dashed lines

indicate contours

of the eigenvalues.

The other case

with 𝜖1 ≤ 𝜖2 looks

identical but with

the imaginary parts

exchanged.
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10
cf. Section 6-1 a)

(6-16) at 𝛾 = ±𝐽/2 due to

𝛾1𝛾2 =
1

4
− 𝛾

2

and the subsequent divergences of Re𝐸+ and Re𝐸−.

Figure 6-4 shows the real and imaginary parts of the energy

eigenvalues (6-17) as functions of the gain-loss parameters. The

areas in which real solutions of Eq. (6-16) exist are enclosed by

hyperbolas and the axes in the second and forth quadrants, respec-

tively. In the first and third quadrants there exist no solutions at all,

as these regions correspond to pure gain or loss. The 𝒫𝒯-symmet-

ric two mode system
10

is retained by 𝛾1 = 𝛾2, which corresponds

to the off-diagonal; both eigenvalues 𝐸± are real and 𝛥𝜖 = 0.

The slices in the (𝛾1, 𝛾2) space, which correspond to the param-

etrisations (6-18) and (6-20), are shown by the two solid lines in

Fig. 6-4. The imaginary parts of 𝐸+ and 𝐸− are growing linearly
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along directions parallel to the diagonal. Hence, the imaginary part

is shifted constantly by slicing parallel to the off-diagonal and one

obtains a, as it were, rotated imaginary part by slicing along any

other direction through the origin. Since both real parts diverge

towards the axes, the energy eigenvalues may be arbitrarily large

by rotating the slice around the origin.

It is worth mentioning that similar theoretical results were found

previously for a BEC in a two-well potential [150]. By balancing

asymmetries in gain and loss with an asymmetric trapping potential,

the formation of a real ground state is possible. This is in agreement

with semi-symmetrisation as discussed in Section 5-4. Lunt et

al. also discuss a two-mode system with asymmetric gain and loss

but with a symmetric trapping potential [150]. This corresponds to

𝜖1 = 𝜖2 = 0 and

𝛾1 = ±𝐽√
1+ 𝑎

1 − 𝑎
, 𝛾2 = ∓𝐽√

1− 𝑎

1 + 𝑎
,

where 𝑎 ∈ ℝ is a free parameter. This Hamiltonian also yields a

single real eigenvalue, yet it is not semi-symmetrisable because of

Eq. (6-16). This again shows that semi-symmetrisation is neither

necessary nor sufficient for the occurrence of real eigenvalues.

d) Bi-complex continuation

In contrast to the𝒫𝒯-symmetric solutions shown in Fig. 6-2, symme-

trisation cannot yield suitable parameters in all parameter regions;

in particular, Eq. (6-16) does not yield real numbers in the shaded

regions shown in Figs. 6-3 and 6-4. While the physical explanation—

i.e. such systems become unable to maintain balanced gain and

loss— is perfectly fine, yet the solutions shown in Fig. 6-3 evoke the
impression that they could easily be extended. Hence, rather out

of mathematical curiosity than of physical necessity, an analytical

continuation of the problem is considered, in which the otherwise

real on-site parameters 𝜖1 and 𝜖2 of the complex Hamiltonian (6-9)
are allowed to become complex themselves. To keep them distinct

from the proper imaginary part, which describes gain and loss, they
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11
cf. Fig. 6-2

12
e.g. see Ref. [198]

13
cf. Appendix G-1

14
cf. Appendix G-1

are extended into an additional complex plane; the Hamiltonian

thus becomes bi-complex.

Analytical continuations are often used in non-linear NHQM

to make a Hamiltonian analytic [196], so that the overall number

of states at each point in the parameter space remains constant.

This is, for example, completely analogous to the argumentation in

Chapter 4, where the number of solutions with real energies is not

preserved;
11

only by considering also complex energies, the number

of solutions remains the same. However, analytical continuation

can also be applied in the context of symmetrisation in linear NHQM

[197]. Here, a new imaginary unit j is introduced with respect

to which Eq. (6-16) is allowed to become complex. Extending the

real coefficients of a complex number into another complex plane

creates a bi-complex number.
12

In contrast to the more famous

quaternions [199], bi-complex numbers are commutative with

respect to multiplications. Yet, bi-complex numbers possess zero

divisors, so that they do not form a division algebra; though, this

property allows for the introduction of an idempotent basis
13

with

elements e+ and e−. The fundamentals of QM—the Schrödinger

equation and the Hilbert space—can also be generalised using bi-

complex numbers [200; 201]. Appendix G gives a short introduction

on bi-complex numbers and the idempotent basis.

Using the idempotent representation,
14

the Hamiltonian (6-9)
with 𝜖𝑘 → 𝜖𝑘 + j𝜖

′
𝑘 can be written as

ℋ=ℋ+e+ +ℋ−e−

with

ℋ± =
⎛⎜
⎝

𝜖1 + i(𝛾1 ∓ 𝜖
′
1) −𝐽

−𝐽 𝜖2 + i(𝛾2 ∓ 𝜖
′
2)
⎞⎟
⎠
. (6-21)

Since the bi-complex numbers e+ and e− act like a basis, the

Hamiltonians (6-21) define two distinct eigenvalue equations, which
makes solving the bi-complex model straightforward.

The bi-complex extension of the parametrisation (6-18) used
in Fig. 6-3a) is shown in Fig. 6-5. For increasing interactions

with the environment, the difference (6-16) becomes bi-complex
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Figure 6-5: The bi-

complex extensions

(dashed) of the com-

plex solutions (solid)

shown in Fig. 6-3a).
There occur two addi-

tional, all bi-complex

solutions (dotted).
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Figure 6-6: Bi-com-

plex extensions of the

solutions shown in

Fig. 6-3b) in analogy

to Fig. 6-5. However,
the bi-complex num-

bers seem to not con-

tain all solutions for

−1/2 ≤ 𝛾/𝐽 ≤ 1/2.
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with respect to j at 𝛾 = ±𝐽. Simultaneously, a pair of bi-complex

eigenvalue solutions arises, which extend the complex solutions.

Moreover, an additional pair of solutions occurs, which always are

truly bi-complex.

Analogously, the parametrisation (6-20) used in Fig. 6-3b) can
be extended, which is shown in Fig. 6-6. If 𝛾 is large enough, the
situation is equivalent to the discussions above. For 𝛾 = ±𝐽/2,

though, the additional bi-complex solutions are not continuous; this

might be an indication that bi-complex numbers are not sufficient

to describe all solutions in Fig. 6-6, just like complex numbers

are not sufficient to describe all solutions in Fig. 6-3. However,
since this concerns only the “unphysical” states, another analytical

continuation is unnecessary.

The bi-complex solutions which extend the stationary states

shown in Fig. 6-3 possess an additional, non-zero imaginary part

with respect to the complex number j, so that the energy eigenvalue

is given by a bi-complex number 𝐸𝑘 + j𝐸
′
𝑘 for 𝑘 = 1,2, where

𝐸𝑘,𝐸
′
𝑘 ∈ ℝ. Using Eq. (G-9), the time evolution then yields the
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15
cf. Section 5-3 c)

idempotent representation

e
i𝐸𝑘𝑡 = e

i(𝐸𝑘+𝐸
′
𝑘)𝑡e+ + e

i(𝐸𝑘−𝐸
′
𝑘)𝑡e−

= e
i𝐸𝑘𝑡(cos𝐸

′
𝑘𝑡 − j sin𝐸

′
𝑘𝑡) .

This clearly shows that such states can still be considered as

stationary, as there occurs no exponential increase or decrease in

their norm.

6-2 Few-mode models

Although few-mode systems with up to four dimensions can, in

principle, be treated analytically in the same way described in Sec-

tion 6-1, the number of equations grows quadratically, which is not

feasible. However, by demanding the reality of the characteristic

polynomial,
15

the number of equations grows only linearly; this

allows for the analytical investigation of a three-dimensional model

in the following. Since the reality of the characteristic polynomial

is sufficient, completely symmetrised systems occur.

The Hamiltonian of the three-mode model possesses the same

structure as the Hamiltonian (6-9),

ℋ=
⎛⎜⎜⎜⎜

⎝

𝜖1 + i𝛾1 −𝐽 0

−𝐽 𝜖2 + i𝛾2 −𝐽

0 −𝐽 𝜖3 + i𝛾3

⎞⎟⎟⎟⎟

⎠

. (6-22)

An evaluation of the imaginary parts of the coefficients of the

characteristic polynomial yields

𝛾1 + 𝛾2 + 𝛾3 = 0 , (6-23)

𝜖1𝛾2 + 𝛾1𝜖2 + 𝜖2𝛾3 + 𝛾2𝜖3 + 𝜖1𝛾3 + 𝛾1𝜖3 = 0 , (6-24)

𝛾1𝜖2𝜖3 + 𝜖1𝛾2𝜖3 + 𝜖1𝜖2𝛾3 + 𝛾1𝛾2𝛾3 −𝐽
2
(𝛾1 + 𝛾3) = 0 . (6-25)

Equation (6-23) shows—as already stated in Ref. [202]— that the

sum of all gain and loss terms must vanish. This stems from the

condition that the trace of the Hamiltonian must be real, which cor-
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16
cf. Eq. (6-10)

17
e.g. see Ref. [129]

18
cf. Eq. (6-16)

responds to the highest-order non-trivial coefficient of the charac-

teristic polynomial,
16

and appears to be a necessary consequence
17

of balanced gain and loss. However, as shown in the two-dimen-

sional case, there exist stationary solutions with real energies even

if Eq. (6-10) is not satisfied. Hence, balanced gain and loss has to

be considered per state, meaning that one also has to consider the

absolute square |𝜓𝑘|
2
of the components of the wave function in

each well. Thus, balanced gain and loss means

∑

𝑘

𝛾𝑘∣𝜓𝑘∣
2
= 0 .(6-26)

It is easy to find the trivial solutions of Eqs. (6-23) to (6-25),
which are given by the Hermitian potential with 𝛾1 = 𝛾2 = 𝛾3 = 0

and the 𝒫𝒯-symmetric potential with 𝛾1 = −𝛾3, 𝛾2 = 0, and 𝜖1 = 𝜖3,

where 𝜖2 can be chosen arbitrarily. However, if either only 𝛾1 or 𝛾3
is zero, Eq. (6-25) cannot be satisfied for 𝐽 ≠ 0. The other solutions
of Eqs. (6-23) to (6-25) are given by

𝛾1 = −(𝜖2 − 𝜖3)𝛾0 ,(6-27)

𝛾2 = (𝜖1 − 𝜖3)𝛾0 ,(6-28)

𝛾3 = −(𝜖1 − 𝜖2)𝛾0 ,(6-29)

where

𝛾0 = ±

√
√
√

⎷

𝛥𝜖3
12
+𝛥𝜖3

23
−𝛥𝜖3

13
+ 3𝐽2𝛥𝜖13

3𝛥𝜖12𝛥𝜖23𝛥𝜖13
(6-30)

with 𝛥𝜖𝑘𝑙 = 𝜖𝑘 − 𝜖𝑙 ≠ 0.

Of course, the solutions (6-27) to (6-29) again depend only on

the difference of the on-site potential parameters.
18

Further, these

solutions exist only if the term under the square root in Eq. (6-30)
is positive. By assuming that 𝛥𝜖12𝛥𝜖23 > 0, one finds

𝛥𝜖12𝛥𝜖23 ≤ 𝐽
2
.
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Figure 6-7: Slices

along the coordinate

planes in the on-site

potential parameter

space. In the blue

shaded regions all of

the three solutions

are real. The solid

line in b) indicates the

parametrisation used

in Fig. 6-9.−4 −2 0 2 4
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c) 𝜖3 = 0

19
cf. Fig. 6-4

20
They correspond to

the zero lines of 𝜖3
and 𝜖1 in Figs. 6-7a)
and 6-7c) and the di-

agonal in Fig. 6-7b),
respectively.

For 𝛥𝜖12𝛥𝜖23 < 0 there exist no solutions at all. Hence, 𝛥𝜖12 and

𝛥𝜖23 must either both be positive or negative, which yields

𝜖1 ≶ 𝜖2 ≶ 𝜖3 ,

i.e. there are two possible gain-loss distributions with

𝛾1 ≷ 0 , 𝛾2 ≶ 0 , 𝛾3 ≷ 0 .

The regions in the (𝜖1, 𝜖2, 𝜖3) parameter space, in which solu-

tions occur, are shown in Fig. 6-7 for slices along the coordinate

planes; they are symmetric in the sense that 𝜖1 and 𝜖3 are com-

pletely interchangeable. As in the two-dimensional case, an anti-

symmetric imaginary potential, i.e. 𝛾1 = −𝛾2 and 𝛾2 = 0, is required

by a symmetric real potential with 𝜖1 = 𝜖3 and arbitrary 𝜖2. The

spectrum for a symmetric real potential looks similar to the spec-

trum of the 𝒫𝒯-symmetric two-mode system in Fig. 6-2, but with an
additional state which has zero energy everywhere. In contrast to

the two-dimensional case, where the 𝒫𝒯-symmetric potentials are

special cases of symmetrised systems,
19
𝒫𝒯-symmetric

20
and sym-

metrised systems are completely exclusive for non-trivial choices

of the parameters as shown in Fig. 6-7. That is, they coincide only
if 𝜖1 = 𝜖2 = 𝜖3 = 0.

Since all three states can potentially be real now, EPs occur in the

spectrum where at least two states coalesce; this phenomenon was

introduced and discussed in Section 4-3 a). The two independent,
second-order EPs between the ground state and the first excited

state, and the first and second excited states, respectively, are
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Figure 6-8: Topology
around a cusp cata-

strophe

21
cf. Eq. (5-3)

shown in Fig. 6-7. They correspond to tangent bifurcations, where

two stationary states coalesce and give birth to a pair of states with

complex-conjugate energies. The trajectories of these EPs in the

coordinate planes meet in the vicinity of the origin and create the

characteristic form of a cusp; hence, such a bifurcation scenario is

called a cusp catastrophe [203]. The cusp points are again EPs but

of third order, i.e. the coalescence of three states in a pitchfork

bifurcation [204–207]. The corresponding real energy surfaces

form a fold, which is illustrated in Fig. 6-8. In Ref. [207] it is shown

that such cusp catastrophes also occur in 𝒫𝒯-symmetric BECs.

Note that there is a strong resemblance between Fig. 6-7b)
and the area in Fig. 6-4, despite the fact that completely different

parameter spaces are shown. This is because the on-site potential

parameters and the gain-loss parameters differ only by an imagi-

nary unit on entering the Schrödinger equation. Hence, real and

imaginary parts of the potential are connected in a certain way. This

is most obvious in 𝒫𝒯-symmetric systems, where the real potential

is symmetric— this corresponds to the diagonal in Fig. 6-7b)—and

the imaginary potential is anti-symmetric. However, this relation

also holds vice versa, i.e. if the imaginary potential is symmetric

and the real potential is anti-symmetric. As an example, the anti-

symmetric real potential 𝜖1 = −𝜖3 and 𝜖2 = 0 can be considered,

which corresponds to the off-diagonal in Fig. 6-7b). Note that

this type of potentials is partially embedded into the region of the

symmetrisable Hamiltonians in the same way as the 𝒫𝒯-symmetric

potentials are in Fig. 6-4. The corresponding spectrum is shown

in Fig. 6-9 as a function of the on-site potential parameter 𝜖1,

and the corresponding imaginary potential is chosen according

to Eqs. (6-27) to (6-30). Remarkably, the imaginary potential is

always symmetric with 𝛾1 = 𝛾3. Such potentials are called anti-𝒫𝒯-

symmetric [133; 134] since they satisfy
21

{𝒫𝒯,𝑉} = 0 ,

where the curly braces indicate the anti-commutator. 𝒫𝒯 and anti-

𝒫𝒯 symmetry are two special cases which show that symmetrised

systems indeed bear certain symmetries, even though they may

not always be obvious.
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Figure 6-9: Solutions
of the three-mode sys-

tem for an anti-sym-

metric potential with

𝜖2 = 0 and 𝜖1 = −𝜖3,

i.e. this corresponds

to the solid line in

Fig. 6-7b). Suitable

gain-loss parameters

are determined by

Eqs. (6-27) to (6-29)
for 𝛾0 > 0. The same

spectrum can be ob-

tained with 𝛾0 < 0, be-

ing indicated by grey

lines.
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Apart from 𝒫𝒯 and anti-𝒫𝒯-symmetric configurations, there

again exist also completely asymmetric potentials which still lead to

symmetrised Hamiltonians. This holds, in particular, also for semi-

symmetrised Hamiltonians. In principle, one can find potentials

with any number of real or complex-conjugate energies up to the

number of sites. However, there is no straightforward way of

constructing such semi-symmetrised Hamiltonians in multi-well

potentials. Even in a three-mode system it is already feasible—

though, for three dimensions not yet essential— to resort to nu-

merical methods for calculating the potential parameters using a

variational approach. In the next section, though, a special class of

multi-mode systems is introduced which yield interesting properties

for an arbitrary number of potential wells.

6-3 Transport chains

One might observe that for 𝜖2 = 𝛾2 = 0 Eqs. (6-23) and (6-24) of
the three-mode system reduce to Eqs. (6-10) and (6-11) of the two-
mode system in the (𝜖1, 𝜖3) space. This holds, in fact, for any multi-

mode systems of dimension 𝑛 with “empty” inner sites, i.e.

𝜖𝑘 = 𝛾𝑘 = 0 (6-31)

for 𝑘 = 2,… ,𝑛 − 1.

Eq. (6-25) and the respective conditions in a general multi-mode

system can only be satisfied with 𝛾1 = −𝛾3 for 𝐽 ≠ 0. By dropping
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Figure 6-10: Spectra
of chain potentials

with 𝑛 sites varied

along the hyperbolic

edge in the fourth

quadrant in Fig. 6-4
via the angle 𝜑. In all

cases the spectra are

real with the excep-

tion of a purely imag-

inary eigenvalue, re-

spectively. For com-

parison, the spectra

of the corresponding

isolated 𝑛-mode sys-

tems are shown in

grey.
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Eq. (6-25), though, the analytic solutions of the two-mode system

can be used to determine the parameters in the outer sites. The

investigation of the two-mode system already showed that the

dropping of some of the sufficient conditions may lead to semi-

symmetrised systems; hence, this approach appears to be plausible.

The parameters of the outer sites are chosen according to the

solutions of the two-mode system in Section 6-1 c) as

𝜖1 = 𝜖𝑛 = 0(6-32)

and

𝛾1
𝐽
= √cot (

𝜋

4
−𝜑) ,(6-33)

𝛾𝑛
𝐽
= −√tan(

𝜋

4
−𝜑) ,(6-34)

which corresponds to the hyperbola along which the term under

the square root in Eq. (6-16) vanishes for non-symmetric imaginary

potentials in Fig. 6-4. Equations (6-33) and (6-34) are parametrised

by the angle 𝜑 ∈ [−𝜋/4,𝜋/4] in the fourth quadrant.

The complex spectra of such systems with up to 𝑛 = 5 wells

are shown in Fig. 6-10. A comparison with the spectrum of the

two-mode system in Fig. 6-10 shows that, by using the analytical
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Figure 6-11: Occupa-
tions |𝜓|

2
of and the

currents 𝑗 between

the sites of the four-

mode system shown

in Fig. 6-10 at the

angle 𝜑 = 𝜋/10.
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22
i.e. 𝛾1 = 𝛾𝑛 = 0

23
cf. Eq. (6-26)

solutions of the two-mode systems, the multi-mode systems “inherit”

some of its properties. In all systems the same purely imaginary

energy eigenvalue occurs, which crosses the real axis only for a

𝒫𝒯-symmetric potential at 𝜑 = 0. This is, in fact, exactly where

the EP in Fig. 6-4 occurs. Surprisingly, the remaining 𝑛 − 1 states

possess entirely real energies with their real parts being distributed

symmetrically around 𝐸 = 0. This is because an empty subsystem

supports any currents imposed on it by the parameters in the outer

wells. For comparison, the spectra of isolated 𝑛-well systems
22

along the same parametrisations are shown. This reveals that the

real subspectrum of a semi-symmetrised 𝑛-well system equals the

spectrum of the isolated (𝑛 − 1)-well system with the addition of

the complex eigenvalue. This is, however, only the case if gain and

loss are balanced.
23

In general, for arbitrary gain-loss parameters

the spectrum becomes complex.

One might assume that this behaviour stems from the fact that

the open transport chain can effectively be separated into an open

two-mode system and an isolated potential chain. However, this

would imply that the eigenstates are, for example, dominant only

in the outer sites with eigenvalues which are similar to the two-

mode system. Figures 6-11 and 6-13 show the occupations |𝜓𝑘|
2

and the currents 𝑗𝑘𝑙 between adjacent sites 𝑙 = 𝑘 ± 1, which are

defined by Eq. (4-5),

𝑗𝑘𝑙 = −i𝐽(𝜓
∗
𝑘𝜓𝑙 −𝜓𝑘𝜓

∗
𝑙 ) ,
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Figure 6-13: Occupa-
tions |𝜓|

2
of and the

currents 𝑗 between

the sites of the five-

mode system shown

in Fig. 6-10 at the

angle 𝜑 = 𝜋/10.
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Figure 6-12: Occupa-
tions in an isolated

four-mode system
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Figure 6-14: Occupa-
tions in an isolated

five-mode system

of the four and five-mode transport chains. It is apparent that the

solutions in Fig. 6-10 must be genuine solutions of the multi-well

potential, as the states indicate no obvious distinction between the

outer and the inner sites of the system.

For comparison, the occupations of the isolated four and five-

mode potentials are shown in Figs. 6-12 and 6-14. While the

discrete wave functions of the isolated multi-mode systems are

truly symmetric, only some states of the open transport chains

are symmetric; in fact, this seems to occur only for an odd overall

number of sites as in Fig. 6-13. The reason, of course, is the

presence of gain and loss which introduces a distinct direction—

i.e. that of the probability current— into the system. Further,

there is a clear difference between the stationary states with real

eigenvalues, for which the currents between all wells are equal,

and the state of the isolated complex eigenvalue which will change

in time. For the latter the initial occupations are also always

exponentially distributed along the potential chains.

6-4 Continuous model

Last but not least, the concept of symmetrisation should also briefly

be discussed in the context of spatially extended quantum systems

with infinite-dimensional Hilbert spaces.
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Space is big. You

just won’t believe

how vastly, hugely,

mind-bogglingly

big it is. I mean,

you may think

it’s a long way

down the road to

the chemist’s, but

that’s just peanuts

to space.

Douglas Adams

24
i.e. there exists a

dense, finite or count-

able infinite subset of

the Hilbert space

25
cf. Appendix B-1

26
cf. Section 5-1

As noted in Ref. [86], there exists an important difference

between finite and infinite-dimensional Hilbert spaces: In con-

trast to finite-dimensional Hilbert spaces, where one can define a

basis independently of the inner product, the definition of a basis

in an infinite-dimensional Hilbert space relies on the definition of

the inner product explicitly; in particular, the requirement of a

separable
24

Hilbert space makes use of the norm. Moreover, while

a comprehensive bi-complex quantum theory can in principle be

defined in such cases, yet several issues occur in going from finite to

infinite-dimensional systems [65]. For example, it is not guaranteed,

that there exists a complete set of bi-orthogonal basis states for a

non-Hermitian quantum system [64]. Another example is the occur-

rence of unbounded operators.
25

Suppose there is an unbounded

metric operator 𝜂, which is not everywhere defined, i.e. the domain

of 𝜂 is smaller than the Hilbert space. If |𝜓⟩ is in the domain of 𝜂

and |𝜓
′
⟩ is not, then ⟨𝜓

′
|𝜂𝜓⟩ is well defined, while ⟨𝜂𝜓

′
|𝜓⟩ is not;

hence, ⟨𝜓′|𝜓⟩ ≠ ⟨𝜓|𝜓
′
⟩
∗
, which violates a fundamental assumption

about the inner product [85].

Despite all these potential issues, it is known already that con-

cepts like 𝒫𝒯-symmetry
26

or the Wadati-type potentials (5-22),
which were discussed at the beginning of Section 5-3, can success-

fully be applied to spatially extended quantum systems, e.g. see

Refs. [61; 138; 207; 208]. The reason for this, as discussed in

Section 5-3 e), mainly lies in the fact that they are connected to

operators which are independent of the basis of the system to which

they are applied, so that most of the concerns above are negligible.

In Section 6-1 b) a first step towards symmetrisation in a spa-

tially extended system has been made by using a double-delta

potential. The discussion in Appendix F shows that the absence of

two stationary solutions is not restricted to the two-dimensional

matrix model, but it is rather a consequence of the limited number

of degrees of freedom. That is, delta potentials can be considered

as a type of system in between discrete and spatially extended

systems.

In the following, complex Gaussian potentials are considered,

which—under the assumption that the potential wells are deep

enough— in the mean-field approximation correspond to the finite-
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27
e.g. see [192; 209]

28
cf. Chapter 8

dimensional matrix models with complex potentials
27

as discussed

before. Hence, only a finite subspace of the infinite-dimensional

Hilbert space is considered and thus the issues related to the

completeness of the basis in its entirety or the domains of unbound

operators should mostly be irrelevant. The physical interpretation

of such potentials corresponds exactly to the one for multi-well

potentials shown in Fig. 6-1.

Gaussian potentials

To derive the corresponding matrix model of a spatially extended

quantum system, usually some kind of tight-binding approximation

is used; for this, a strongly localised set of orthogonal functions

like the Wannier functions are required (e.g. see Ref. [210] for an

overview of the Bose–Hubbard model, from which one can derive

a low-dimensional matrix approximation [193]). Such functions

are, however, often complicated and involve impractical control

parameters. For this reason, it is of interest to use simpler sets of

localised functions, though, they are not orthogonal in most cases.

Because of their properties, Gaussian functions are an obvious

choice, as their form is determined by a simple set of parameters.
28

In the following, a Gaussian multi-well potential of the form

𝑉(𝑥) =

𝑛

∑

𝑘=1

(𝛦𝑘 + i𝛤𝑘) exp
⎛⎜
⎝
−
(𝑥 − 𝑥𝑘)

2

2𝜎2
𝑘

⎞⎟
⎠
.(6-35)

is considered, where 𝛦𝑘 and 𝛤𝑘 are, in analogy to the matrix model,

the real and imaginary part of the complex on-site potential. Since

the potential (6-35) is spatially extended, each potential well at

position 𝑥𝑘 has a non-zero width 𝜎𝑘; hence, the potential barrier

between two adjacent wells—which is, roughly speaking, described

by 𝐽
−1

in the matrix model— is determined by the distance (𝑥𝑘−𝑥𝑙)

and the widths 𝜎𝑘 and 𝜎𝑙 for 𝑙 = 𝑘 ± 1.

The connection between matrix models of the form (6-9) and
(6-22) and their corresponding Gaussian potentials of the form

(6-35) is derived in Appendix E. Yet, the relations between the Gaus-
sian potential parameters and the parameters of a matrix model
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Figure 6-15: Ground
state energy for a)

the Gaussian double-

well potential (6-35)
described by the pa-

rameters 𝜎1 = 𝜎2 = 1,

𝑥1 = −𝑥2 = −1.5, and

𝑉1 = −3 and b) its

corresponding matrix

model. The data is

taken from Ref. [180]

and adapted in such

a way that the matrix

model corresponds to

𝐽 = 1 and 𝜖1 = 0.
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29
i.e. Eq. (6-17) with

Eq. (6-16)

are not shown explicitly, as this would definitely exceed the scope

of this thesis; see Refs. [180; 192; 209; 211; 212] and references

therein for more details on this topic. Instead, a short and rather

qualitative discussion of the results described in Ref. [180] should

be sufficient to conclude this chapter.

Figure 6-15 shows a comparison between a spatially extended

Gaussian double-well potential and its matrix model as discussed in

Section 6-1 c). In contrast to Ref. [180], all quantities are normalised

with respect to the coupling parameter 𝐽 and the energy scales are

shifted by 𝜖1, which corresponds to the choice 𝜖1 = 0 in the matrix

model. The spatially extended solutions are obtained by means

of numerical variation with the condition that the discrete matrix

approximation of the double well corresponds to a symmetrised two-

mode matrix model, for which the solutions are known analytically.
29

This has to be done at every point in the parameter space, so that

only a low-resolution image as in Fig. 6-15a) can be produced

within a reasonable amount of time. Nevertheless, a comparison

with the analytical matrix model in Fig. 6-15b) shows that, apart
from a real ground state energy, the qualitative features of the

symmetrised matrix model are preserved in the extended system.

That is, there exists only one real ground state, a phenomenon

which is known already from the double-delta potential discussed

in Appendix F. Further, the domain in which the real ground state

exists is also enclosed by some hyperbolic function, even though

it approaches the axes a lot more gentle than the hyperbolas in

Continuous model 129



𝛦1/𝐽

𝛦
3
/
𝐽

Figure 6-16: Extend-
ed three-mode model

taken from Ref. [180]

30
i.e. only the edges

have to be found

Fig. 6-15b); yet, because of physical constraints, it is still to be
expected that no such systems exists for 𝛤𝑘 → ∞. It should further

be noted that Fig. 6-15 also shows the 𝒫𝒯-symmetric potentials

along the off-diagonal with 𝛤1 = −𝛤2.

One might notice that the symmetric structure with respect

to the off-diagonal seen in Fig. 6-4 is missing in Fig. 6-15b). The
reason for this is two-fold: First, the parameters in Fig. 6-15b)
are chosen such that the ground state 𝐸− is always real, which

corresponds to the signs of the on-site potential parameters in

Eq. (6-16). Second, in Ref. [180] the system was adjusted with a

focus on the extended potential in Fig. 6-15a); that is, also the

parameters of the matrix model were changed to more suitable but

non-trivial values.

In principle, this method should be applicable to any multi-well

system, provided that the calculations do not exceed the computa-

tional power on hand. However, a three-well potential raises the

difficulty and the calculation time already severely because of the

involvement of a higher-dimensional optimisation procedure. Thus,

potentials with an even higher number of wells are unfeasible to

treat, at least with the same method, that is. Hence, in Fig. 6-16
only the domain is shown

30
in which real solutions of a triple-well

Gaussian potential of the form (6-35) with 𝜎1 = 𝜎2 = 𝜎3 = 1/√2,
𝑥1 = −𝑥3 = −3, and 𝑉2 = −2 occur. Again, the qualitative beha-

viour of the extended potential and the matrix model shown in

Fig. 6-7b) are in good agreement. In Ref. [180] it is further shown

that this qualitative agreement extends also to the eigenvalues and

states, as should be expected if the matrix approximation is well

defined.

These examples show that the concept of semi-symmetrisation

can also be applied in the case of specific, spatially extended po-

tentials of the form (6-35). While the Hilbert space in principle

is infinite-dimensional in these cases, only a finite subspace of

energies and states is considered; this can always be interpreted as

a semi-symmetrised system for which the kernels of the symmetri-

sation operators contain an infinite number of states. Nevertheless,

the Gaussian potentials discussed in this section correspond to

complex potentials and thus allow for a suitable physical inter-
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pretation. In particular, such potentials are suited quite well for a

potential experimental realisation as discussed in Chapter 8.
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1
This refers likewise

to orthogonal and bi-

orthogonal bases.

2
e.g. see Ref. [150]

Non-linear systems 7
So far, only linear quantum systems were considered. However,

in many applications a non-linear variation of the Schrödinger

equation (2-38) arises, which is often simply called the non-linear

Schrödinger equation (NLSE) [213]. The corresponding time-

independent eigenvalue problem then reads

⎛⎜
⎝

𝑝
2

2
+𝑉+𝑓(𝜓)⎞⎟

⎠
∣𝜓⟩ = 𝐸 ∣𝜓⟩ , (7-1)

where 𝑓 is a non-linear functional of the wave function 𝜓. Thus, the

Hamiltonianℋ(𝜓) of such a non-linear system depends explicitly

on its solution |𝜓⟩. In the case of

𝑓(𝜓) ∝ ∣𝜓∣
2
= ⟨𝜓∣𝜓⟩ , (7-2)

Eq. (7-1) is called the Gross–Pitaevskii equation (GPE) [214; 215],

which describes a Bose–Einstein condensate (BEC) with contact in-

teractions in optical potentials [179; 183; 192; 208; 216]. However,

there is also a wide range of other systems described by a GPE

[217; 218], such as light in paraxial approximation with a Kerr non-

linearity [216; 219; 220], polarons [221–223], excitons [224], the

propagation of radio waves in the ionosphere [225], or even the

contraction of proteins [226].

There occur several mathematical obstacles regarding the NLSE

(7-1). For one, there exists no basis1 for non-linear quantum systems.

This is because, technically speaking, every state of a non-linear

system defines its own Hamiltonian. The only connection between

these different systems is that their Hamiltonians arise from the

non-linear formℋ(𝜓) for a specific solution. Thus, there exists

no mathematically rigorous, general framework for the treatment

of non-linear NHQM. This makes an analytical treatment quite

difficult, even for simple discrete systems. Hence, in most of these

cases one must resort to numerical investigations.
2
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3
i.e. Eq. (6-16) and

Eqs. (6-27) to (6-29)

Further, there exist multiple sources for instabilities. Due to the

superposition principle in linear QM, perturbations of a stationary

state can only be caused by other eigenstates of the Hamiltonian.

Hence, stationary solutions can only be considered stable if the

imaginary parts of the eigenvalues of the other states are all

negative; such states will decay exponentially and thus do not

perturb the stationary state. If, on the other hand, one or more of the

remaining states have an eigenvalue with positive imaginary part,

this state and also its influence is amplified indefinitely, eventually

leading to the destruction of the stationary state. This can be

considered as a dynamical effect, as it requires the system to

evolve in time. In non-linear systems, however, the stationary

states themselves can also be unstable at the initial time. This is a

general property of non-linear systems and it is discussed in detail

in Section 7-2.
Nevertheless, the investigation of non-linear quantum systems

also yields unique and highly practical properties. Remember that

the existence of stationary solutions in the symmetrised systems

discussed in Chapter 6 largely depends on precise choices of the

parameters relative to each other.
3
If only one parameter is per-

turbed, the stationary solutions might vanish. This property is

highly undesirable, particularly in experimental situations, where

the accuracy of the parameters strongly depends on the experi-

mental setup and the amount of control the experimentalist has

over the system and its environment. This issue can be overcome

by adding a non-linear part of the form (7-2) to the Hamiltonian

of the system [150]. Therefore, this chapter is dedicated to the

numerical investigation of stationary states in non-linear multi-

mode systems and their stability properties.
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4
cf. Chapter 6

5
i.e. 𝑔 = 0

7-1 Non-linear eigenvalue problems

A general, non-linear 𝑛-mode system with a non-linear term of the

form (7-2) is described by the 𝑛-dimensional, tridiagonal matrix

ℋ=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎝

𝜖1 + i𝛾1 +𝑔∣𝜓1∣
2

−𝐽

−𝐽⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−𝐽

−𝐽 𝜖𝑛 + i𝛾𝑛 +𝑔∣𝜓𝑛∣
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎠

(7-3)

which, for example, represents the mean-field description of a BEC

in a one-dimensional optical lattice of length 𝑛, where the non-

linear terms describe contact interactions. Equation (7-3) has the
following parameters:

4

— The 𝑛 real potential parameters 𝜖1, …, 𝜖𝑛 provide only 𝑛 − 1

degrees of freedom because of the gauge freedom of the energy.

— The 𝑛 imaginary potential parameters 𝛾1, …, 𝛾𝑛, on the other

hand, are all independent.

— The coupling constant 𝐽 determines the exchange between

neighbouring sites and can be set to 𝐽 = 1 by a suitable choice

of the energy unit.

— The strength 𝑔 of the state-dependent non-linear part depends

on properties of the system under consideration. Hence, it is

assumed that 𝑔 is given and that it is equal at each site.

In a linear quantum system
5
these parameters are sufficient to

describe the linear Hamiltonian completely. However, for 𝑔 ≠ 0

the Hamiltonian (7-3) depends on its own state vector. Hence, in

addition to the control parameters described above, one also has

to consider the system parameters:

— The wave function is described by 2𝑛 real parameters. However,

due to the freedom of the global phase, this yields only (2𝑛 − 1)

degrees of freedom.
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“The Answer to the

Great Question… Of

Life, the Universe

and Everything…

Is… Forty-two,”

said Deep Thought,

with infinite

majesty and calm.

Douglas Adams

6
they are not neces-

sarily solutions of the

non-linear problem

— Because the energy in Eq. (7-1) is complex, there are another 2

degrees of freedom.

Assuming that all control parameters are given, the Schrödinger

eigenvalue problem (2-39) is well determined, since it yields (2𝑛+1)

conditions, including the normalisation of the wave function.

The fact that the Hamiltonian depends on its state vector also

means that, technically speaking, each such non-linear matrix has

only one solution. This immediately implies that there exists no

bi-orthogonal basis for a non-linear quantum system. Thus, the

eigenvectors and eigenvalues of a state-dependent Hamiltonian

matrix cannot be obtained by ordinary algorithms for diagonalisa-

tion. Therefore, the following section is dedicated to the numerical

procedures used in this thesis for finding solutions to non-linear

systems.

a) Solving non-linear eigenvalue problems

A time-dependent NLSE can in general be solved using the inverse

scattering transform, where it appears as the compatibility condi-

tion of a Zakharov–Shabat system [227]. However, this thesis is

mainly concerned in obtaining the solutions of the discrete GPE

(7-1) and similar non-linear matrix eigenvalue problems which are

not time-dependent but explicitly eigenvector-dependent. Such

equations frequently occur in electronic structure calculations

[228; 229] and, of course, for contact interactions in BECs [230].

However, most methods for solving non-linear eigenvalue problems

either only work for a specific type of equations or are developed

in the context of Hermitian QM. For these reasons, only purely

numerical and also rather general methods are considered in the

following.

Self-consistent field iteration

Note that the state-dependent matrix (7-24) yields an ordinary

linear matrix after the insertion of the state; thus, it possesses 𝑛

“solutions”
6
which can be calculated by usual means. If the inserted
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state 𝜓i is a solution of the non-linear eigenvalue problem, though,

then it must also be one of the 𝑛 solutions of the linear matrix,

i.e. 𝜓𝑜
!
= 𝜓i for 𝑜 ∈ [0,𝑛]. However, if 𝜓i is not a solution, it will

differ from all resulting states 𝜓𝑜.

Under the assumption that the inserted state is already close to

an actual solution, an iterative algorithm can be constructed if a

suitable state 𝜓
(𝑘+1)
i for the next iteration is chosen among the 𝑛

eigenvectors resulting in the 𝑘-th step. This can be done with the

condition max𝑜⟨𝜓
(𝑘)
i |𝜓

(𝑘)
𝑜 ⟩, which is satisfied by the eigenvector 𝜓𝑜

being most similar to the inserted state 𝜓i. Thus, the evolution of a

specific state under the non-linear matrix may be traced. When

the changes between the states in two consecutive steps is mall

enough, this state can, within numerical limits, considered to be

the solution of the non-linear eigenvalue problem. This approach is

called a self-consistent field iteration, which is both intuitive and

widely used, e.g. see Refs. [229; 231] and references therein.

The advantages of this approach clearly lie in its simplicity and

in the fact that there are just simple operations involved which

are numerically inexpensive. Thus, a self-consistent field iteration

yields rather short run-times and scales quite well. If and if so

under which circumstances the state vector converges is hard to

determine beforehand, though, and these factors largely depend

on the quality of the initial choice of the state; this may be chosen

randomly or can simply be guessed. However, if the non-linear

terms are small in comparison with the other matrix elements, then

the solutions of the corresponding linear problem with 𝜓
(0)
i = 0

can provide suitable approximations for the solutions of the non-

linear problem.

Enumerative optimisation

While the self-consistent field iteration approach is motivated by

physical considerations and works particularly well if the non-

linearity occurs as a perturbation of the linear eigenvalue problem,

it heavily relies on the initial choice of the inserted state. If the

heuristic approach of using the solutions of the linear problem

fails, one is forced to resort to guesswork, which may even in the
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simplest cases be unfeasible. Moreover, with this approach the

number of initial guesses is limited to the dimension 𝑛 of the linear

eigenvalue problem, whereas there may exist more solutions for

the non-linear eigenvalue problem.

Both of these reasons above make it necessary to have a joker in

one’s sleeve, so to speak. Numerically, the last resort always is the

numerical variation, which essentially means to solve an equation

via a root search algorithm. This approach is applicable in almost

any situation, although convergence is not guaranteed either and,

in general, depends on the complexity of the problem and again

also on the initially guessed solution.

The issue with the initial guess may be resolved by an enu-

merative optimisation, which combines a root search algorithm

with the enumerative approach to use all different combinations

of initial parameters from a specific subspace of the parameter

space. If the grid points in the parameter space are chosen densely

enough, chances are good that all solutions in this region are found.

Moreover, since most root search algorithms are implemented

with some heuristic of their own, they can also explore regions

outside of the initial parameter region and retrieve solutions in its

surroundings.

While the enumerative optimisation approach is, in principle,

limited only by the computational hardware at hand, calculations

may take long amounts of time depending on the grid size and

density. They also scale rather poorly with the dimensionality of

the problem and can become increasingly error-prone due to the

complexity of the multi-dimensional parameter landscape. There-

fore, such numerical variational approaches are considered as

brute-force methods, which might not be fast but should still work

practically in all situations.

7-2 Stability of stationary solutions

In contrast to linear systems, the stability of states is not a priori

clear. This becomes apparent by considering the most simple

type of a non-linear system, that is a one-dimensional quadratic
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7
Here, the term “sin-

gularity” is used in a

system-theoretic con-

text and means a sin-

gular point at which

a small perturbation

causes the system to

change its behaviour

completely.

Figure 7-1: Stable

Figure 7-2: Unstable

potential. Figures 7-1 and 7-2 show the two fundamentally different

types of quadratic potentials, i.e. they possess a stable and an

unstable equilibrium point, respectively. Stable means that the

system remains close to its equilibrium state if it is perturbed;

unstable means the opposite and in most cases the system actually

deviates exponentially from its equilibrium after a perturbation.

From a physical point of view such unstable equilibria must not be

considered as stationary solutions at all, since they mathematically

represent singularities.
7
Such an equilibrium is never observable

in nature or in a lab, since there exist uncertainty relations which

prevent both their preparation and their preservation.

Yet, unstable equilibria are still of mathematical interest: In

classical double-well potentials there exist two stable equilibria—

one in each well, respectively— and one unstable equilibrium

on top of the potential barrier separating the two wells. In fact,

the unstable equilibrium represents the threshold for transitions

between the two wells; that is, if a particle which is located in one

well possesses enough energy to reach the unstable equilibrium,

then it can transition into the other well. This occurs, for example,

in the Kramers escape problem [232], which belongs to the field of

transition state theory, e.g. see [233; 234].

The situation in non-linear and potentially multi-dimensional

systems is in general more complex and there may exist multiple

equilibrium points. To determine if a certain equilibrium is either

stable or unstable, it is, in principle, sufficient to study the response

of the system with respect to small perturbations, i.e. its linear

stability. However, linear stability does not imply that the system

is also stable with respect to stronger perturbations; it only shows

that the system is stable for sufficiently small perturbations. In

general, linear stability is a weaker form of stability as it also

covers metastable equilibria that are linearly stable but otherwise

unstable.

In the first part of this section, linear stability is considered for

general dynamical systems. To give an example, these results are

then applied explicitly to the two-mode matrix model introduced in

Section 6-1 b). It is shown that this corresponds to the Bogoliubov–

de Gennes equations (BdGE)—a linear system of equations which
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can be used to determine the linear stability of solutions of the

GPE [150; 235].

a) Linear stability in dynamical systems

A general, dynamic system can be described by its equations of

motion

�̇� = 𝐝(𝐳) ,(7-4)

where 𝐳 ∈ ℂ
𝑁
. A fixed point solution 𝐳0 satisfies �̇�0 = 𝐝(𝐳0) = 0.

To determine its stability, a perturbation can be introduced, so that

𝐳(𝑡) = 𝐳0 +𝛿𝐳(𝑡)(7-5)

with |𝛿𝐳𝑖| ≪ 1. The equations of motion (7-4) in the proximity of

the fixed point then read

𝐝(𝐳) = 𝐝(𝐳0)︸ ︷︷ ︸
=0

+𝛿𝐳
𝜕𝐝

𝜕𝐳
∣
𝐳0

+𝒪(𝛿𝐳
2
) =

d

d𝑡
𝛿𝐳 .

This yields a differential equation,

d

d𝑡
𝛿𝐳 = 𝐽𝑑𝛿𝐳 ,(7-6)

which describes the dynamics of the perturbation with the Jacobian

matrix

[𝐽𝑑]𝑘𝑙 =
𝜕𝑑𝑘
𝜕𝑧𝑙

∣
𝐳0

(7-7)

evaluated at the fixed point. The solution of Eq. (7-6) is given by

𝛿𝐳(𝑡) = e
𝐽𝑑𝑡𝛿𝐳(0) ,

where 𝛿𝐳(0) is the perturbation at time 𝑡 = 0. If the perturbations

𝛿𝐳𝑘(0) are chosen as eigenvectors of the Jacobian matrix 𝐽𝑑, then

the corresponding eigenvalues 𝑗𝑘 determine whether the system is
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8
e.g. see Fig. 7-3

9
cf. Section 7-4 b)

stable or unstable under such a perturbation, i.e.

𝛿𝐳𝑘(𝑡) = e
𝑗𝑘𝑡𝛿𝐳𝑘(0) . (7-8)

That is, if Re𝑗𝑘 > 0, then the perturbation 𝛿𝐳𝑘(0) is amplified

exponentially, which means that 𝐳0 is unstable. For Re𝑗𝑘 < 0 the

perturbation is damped off and the system returns to its stable

equilibrium state 𝐳0. The imaginary parts Im𝑗𝑘, on the other hand,

merely describe oscillations around the fixed point, which makes

them unimportant for a stability analysis. Changes of stability can

be connected to bifurcations
8
which occur in NHQM at EPs as

discussed in Section 4-3 a); though, they may also occur at non-

exceptional points.
9

b) Linear stability of non-linear quantum

systems

In principle, the linearisation of a non-linear quantum system

described by Eq. (7-1) is straightforward and leads to an equation

similar to Eq. (7-8): With an ansatz of the form 𝜓(𝑡) = 𝜓0 +𝛿𝜓(𝑡),

where 𝜓0 again describes a fixed point solution,

i
d𝜓0
d𝑡

= (ℋ−𝜇𝟙)𝜓0 = 0 .

Here, the energy has to be shifted by the eigenvalue 𝜇 because a

fixed point solution must not evolve in time, i.e. it corresponds to

the eigenvalue 𝜇 = 0. However, care has to be taken due to the

appearance of the absolute square |𝛿𝜓|
2
of the wave function; it is

not holomorphic for 𝛿𝜓 ≠ 0, i.e.

𝜕Re ∣𝛿𝜓𝑘∣
2

𝜕Re(𝛿𝜓𝑘)
= 2Re(𝛿𝜓𝑘) ≠ 0 =

𝜕 Im ∣𝛿𝜓𝑘∣
2

𝜕 Im(𝛿𝜓𝑘)
,

𝜕Re ∣𝛿𝜓𝑘∣
2

𝜕 Im(𝛿𝜓𝑘)
= 2 Im(𝛿𝜓𝑘) ≠ 0 =

𝜕 Im ∣𝛿𝜓𝑘∣
2

𝜕Re(𝛿𝜓𝑘)
.

Hence, the complex derivatives required for the calculation of the

Jacobian matrix (7-7) are not well defined.
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10
Due to the global

phase and the norm,

the degrees of free-

dom of the wave func-

tion can be reduced

at least to 2𝑁− 2.

To solve this issue there are basically two possible approaches:

1) The 𝑁-dimensional complex wave function can be described

by up to 2𝑁 real parameters
10
𝐳, i.e. 𝜓(𝐳). Then, the absolute

square, being a real function of the parameters, is differentiable

with respect to 𝑧𝑘, respectively. The ansatz (7-5) corresponds to
a perturbation of the wave function

𝛿𝜓(𝑡) = 𝜓(𝐳0 +𝛿𝐳(𝑡)) − 𝜓(𝐳0) ≈ 𝛿𝐳(𝑡)
𝜕𝜓

𝜕𝐳
∣
𝐳0

in linear order. This approach is particularly suited if the wave

function is already parametrised by a set of real quantities.

2) By distinguishing between left-hand and right-hand wave func-

tions explicitly, the absolute square can be considered to be a

linear function,

∣𝜓𝑘∣
2
= 𝜓𝑘𝜓𝑘

,(7-9)

where 𝜓𝑘 ≡ 𝜓
∗
𝑘 and 𝜓𝑘 ≡ 𝜓𝑘 are the left-hand and right-hand

wave functions, respectively, which differ only by a complex con-

jugation for complex symmetric matrices. In this case, Eq. (7-9)
is complex differentiable with respect to both𝜓𝑘 and𝜓𝑘, i.e. they

are considered to be independent.

In the following, the second option is considered. The equations

of motion for 𝜓 and 𝜓 are given by

i�̇� = [ℋ(𝜓,𝜓) − 𝜇𝟙]𝜓 ,(7-10)

i�̇� = −[ℋ
∗
(𝜓,𝜓) − 𝜇

∗
𝟙]𝜓 ,(7-11)

where Eq. (7-11) is merely the complex conjugate of Eq. (7-10).
However, if the Hamiltonian is complex symmetric, i.e.ℋ

∗
=ℋ

†
,

Eq. (7-11) corresponds, in fact, to the correct left-hand eigenvalue

equation. Hence, 𝜓 and 𝜓 can be considered as independent

quantities corresponding to the different Hamiltonians

∼
ℋ(𝜓,𝜓) ≡ℋ(𝜓,𝜓) − 𝜇𝟙 ,
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−
∼
ℋ
∗
(𝜓,𝜓) ≡ −ℋ

∗
(𝜓,𝜓) + 𝜇

∗
𝟙 . (7-12)

The minus sign in Eq. (7-12) is not only important because it makes

the Hamiltonians distinct, but also because it provides the correct

time evolution for left-hand wave functions with respect to the

ordinary Schrödinger equation; hence, from this “perspective” the

left-hand wave functions evolve backwards in time.

The corresponding left-hand and right-hand wave functions can

now be combined into a single vector 𝜙 ≡ (𝜓,𝜓)
⊺
, for which the

“Schrödinger equation” reads

i�̇� =
⎛⎜⎜
⎝

∼
ℋ(𝜙) 0

0 −
∼
ℋ
∗
(𝜙)

⎞⎟⎟
⎠

𝜙 ≡ ℎ(𝜙) . (7-13)

A stationary solution 𝜙0 then satisfies i�̇�0 = ℎ(𝜙0) = 0. A perturba-

tion of 𝜙0 evolves in time according to

𝛿𝜙(𝑡) = e
−i𝐽(𝜙0)𝑡𝛿𝜙(0) , (7-14)

where

𝐽𝑘𝑙(𝜙0) =
𝜕ℎ𝑘
𝜕𝜙𝑙

∣
𝜙0

. (7-15)

By again assuming that the initial perturbations 𝛿𝜙(0) are eigen-

states of the Jacobian matrix (7-15), the problem reduces to the

eigenvalue problem

𝐽ℎ(𝜙0)𝛿𝜙𝑘 = 𝜔𝑘𝛿𝜙𝑘 . (7-16)

Perturbations are damped off if Im𝜔𝑘 < 0, i.e. 𝜙0 is stable if this

condition holds for all eigenvalues 𝜔𝑘 of 𝐽.

Some remarks about Eqs. (7-14) and (7-15) are listed below:

1) 𝛿𝜙 corresponds to a simultaneous perturbation of the left-hand

and right-hand stationary states.

2) In a linear system the state can only be perturbed by another

state solution of the Schrödinger equation due to the superpos-

ition principle. Hence, one can easily show that the stability
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cf. Eq. (7-19)

eigenvalues 𝜔𝑘 of Eq. (7-16) are given by the energy differences
between the stationary state under consideration and the per-

turbing state. This immediately shows that a linear system is

stable if all eigenvalues are real, i.e. perturbations with other

eigenstates will just cause oscillations of the system around the

stationary solution.

3) In contrast to Eq. (7-8), an additional imaginary unit appears

in the exponential function. This is because the Jacobian mat-

rix (7-15) corresponds to the Schrödinger-type equation (7-13)
instead of the classical type of equations of motion �̇� = −iℎ(𝜙)

discussed in Section 7-2 a). Therefore, the imaginary parts of

the eigenvalues now determine the stability of the states. This

definition seems to be more natural for quantum systems and

leads to the BdGE as shown in Section 7-2 c).

4) It is not surprising that not all components of the Jacobian matrix

(7-15) are independent. In fact, only half of its components

have to be calculated. One may write Eq. (7-13) in the form

ℎ(𝜙) = (ℎ,ℎ)
⊺
. Then

𝜕ℎ𝑘
𝜕𝜓

𝑙

= −
𝜕ℎ

∗
𝑘

𝜕𝜓
𝑙

= −(
𝜕ℎ𝑘
𝜕𝜓𝑙

)

∗

,

𝜕ℎ𝑘
𝜕𝜓𝑙

= −
𝜕ℎ

∗
𝑘

𝜕𝜓𝑙
= −⎛⎜

⎝

𝜕ℎ𝑘
𝜕𝜓

𝑙

⎞⎟
⎠

∗

.

Therefore, the Jacobian matrix has the form
11

𝐽ℎ =
⎛⎜
⎝

𝐴 𝐵

−𝐵
∗
−𝐴

∗
⎞⎟
⎠
.(7-17)

Nevertheless, all eigenvalues of 𝐽ℎ have to be calculated, since

Eq. (7-17) is not symmetric per se.

5) The numerical calculation of the Jacobian matrix (7-15) is
straightforward: The derivatives of ℎ𝑘(𝜙1,… ,𝜙𝑁) can be well

approximated by the finite difference

𝜕ℎ𝑘
𝜕𝜙𝑙

=
ℎ𝑘(… ,𝜙𝑙 +𝛥,…) − ℎ𝑘(… ,𝜙𝑙 −𝛥,…)

2𝛥
+𝒪(𝛥

2
) ,
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which can readily be obtained from the Taylor expansions of

ℎ𝑘(… ,𝜙𝑙 +𝛥,…) and ℎ𝑘(… ,𝜙𝑙 −𝛥,…) around𝜙𝑙. The parameter

𝛥≪ 1 represents a small change in the variable 𝜙𝑙. For 𝛥 → 0

the derivative of ℎ𝑘(𝜙) can be obtained exactly. However, any

computer can only provide a finite precision. Moreover, calcu-

lations with very small numbers introduce not only rounding

errors, but can also lead to a reduction of the number of signi-

ficant digits due to cancellation. Hence, care has to be taken in

choosing the value of 𝛥, which must not be too large nor too

small.

c) Linear stability of the two-mode model

As an example, the linear stability analysis is now applied to a non-

linear, state-dependent two-mode matrix model. For the Hamilton-

ian (7-3) with 𝑛 = 2 one finds

ℎ(𝜓,𝜓) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜

⎝

(𝜖1 + i𝛾1 +𝑔𝜓1
𝜓1 −𝜇)𝜓1

−𝐽𝜓
2

(𝜖2 + i𝛾2 +𝑔𝜓2
𝜓2 −𝜇)𝜓2

−𝐽𝜓
1

−(𝜖1 − i𝛾1 +𝑔𝜓1𝜓1
−𝜇

∗
)𝜓1 +𝐽𝜓2

−(𝜖2 − i𝛾2 +𝑔𝜓2𝜓2
−𝜇

∗
)𝜓2 +𝐽𝜓1

⎞⎟⎟⎟⎟⎟⎟⎟⎟

⎠

and its Jacobian matrix

𝐽ℎ =

⎛⎜⎜⎜⎜⎜⎜

⎝

𝜖1+i𝛾1+2𝑔𝜓1
𝜓1−𝜇 −𝐽 𝑔𝜓2

1
0

−𝐽 𝜖2+i𝛾2+2𝑔𝜓2
𝜓2−𝜇 0 𝑔𝜓2

2

−𝑔𝜓21 0 −𝜖1+i𝛾1−2𝑔𝜓1
𝜓1+𝜇

∗ 𝐽

0 −𝑔𝜓22 𝐽 −𝜖2+i𝛾2−2𝑔𝜓2
𝜓2+𝜇

∗

⎞⎟⎟⎟⎟⎟⎟

⎠

∣
∣
∣
∣
∣
∣𝜓=𝜓0
𝜓=𝜓0

,

(7-18)
where 𝜖1 = −𝜖2 = 𝜖, 𝛾1 = 𝛾(1 + 𝛿), and 𝛾2 = −𝛾(1 − 𝛿).

Equation (7-16) with Eq. (7-18) corresponds to the Bogoliubov–
de Gennes equations (BdGE) for the two-mode matrix model. This

becomes clear if Eqs. (7-16) and (7-18) are rewritten in the form

⎛⎜
⎝

ℋ0(𝜓0
,𝜓0) − 𝜇𝟙 𝛥(𝜓

0
)

−𝛥
∗
(𝜓0) −ℋ

∗
0 (𝜓0

,𝜓0) + 𝜇
∗
𝟙
⎞⎟
⎠

⎛⎜
⎝

𝛿𝜓

𝛿𝜓
⎞⎟
⎠
= 𝜔⎛⎜

⎝

𝛿𝜓

𝛿𝜓
⎞⎟
⎠
, (7-19)
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where ℋ0(𝜓0,𝜓0) is the Hamiltonian (6-5) with twice the non-

linear coupling strength, that is 𝑔 → 2𝑔, evaluated at the stationary

solution and

𝛥(𝜓
0
) ≡ ⎛⎜

⎝

𝑔𝜓
2

1
0

0 𝑔𝜓
2

2

⎞⎟

⎠

∣
∣
∣
∣𝜓=𝜓

0

,

𝛥
∗
(𝜓0) ≡

⎛⎜
⎝

𝑔𝜓
2
1 0

0 𝑔𝜓
2
2

⎞⎟
⎠

∣
∣
∣
∣𝜓=𝜓0

.

Equation (7-19) describes a linear system of coupled equations

for 𝛿𝜓 and 𝛿𝜓,

(𝜇 +𝜔)𝛿𝜓 =ℋ0(𝜓0
,𝜓0)𝛿𝜓+𝛥(𝜓0

)𝛿𝜓 ,(7-20)

(𝜇
∗
−𝜔)𝛿𝜓 =ℋ

∗
0 (𝜓0

,𝜓0)𝛿𝜓+𝛥
∗
(𝜓0)𝛿𝜓 ,

(7-21)

which can be obtained from the “ordinary” right-hand GPE with

the ansatz

𝜓(𝑡) = e
−i𝜇𝑡

(𝜓0 +𝜆𝜓p(𝑡)) ,(7-22)

where 𝜓0 is the fixed point solution and 𝛿𝜓 = 𝜆𝜓p(𝑡) with 𝜆 ∈ ℝ is

a small perturbation, i.e. |𝜆| ≪ 1. Instead of shifting the energy

suitably as before, so that the unitary time evolution vanishes, the

ansatz (7-22) includes the correct time evolution.

A suitable ansatz for the perturbation is given by

𝜓p(𝑡) = 𝛿𝜓e
−i𝜔𝑡

+𝛿𝜓
∗
e
i𝜔∗𝑡

,(7-23)

which resembles the general solutions for a wave equation or

an oscillator equation. Again, 𝛿𝜓 and 𝛿𝜓 are considered to be

independent, simultaneous perturbations of the left-hand and right-

hand stationary states. After plugging Eqs. (7-22) and (7-23) into
the GPE, a comparison of the coefficients of exp(−i𝜔𝑡) and its

complex conjugate can be performed. This yields the BdGE (7-20)
and (7-21) in linear order of 𝜆.

The ansatz (7-23) also reveals a symmetry of the BdGE (7-20) and
(7-21): The replacements 𝛿𝜓 → 𝛿𝜓

∗
and 𝛿𝜓

∗
→ 𝛿𝜓 immediately
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show that for every stability eigenvalue 𝜔 with (𝛿𝜓,𝛿𝜓)
⊺
, also −𝜔

∗

is a solution with (𝛿𝜓
∗
, 𝛿𝜓

∗
)
⊺
; that is, the real part of the spectrum

is symmetric. However, the linear stability is governed only by the

imaginary parts of the eigenvalues, which are two-fold degenerate.

7-3 Symmetrisation in non-linear
systems

The concept of symmetrisation in linear quantum systems was

already introduced in Chapter 5. Now, one could simply try to apply

this concept to non-linear systems of the form

ℋ=ℋlin +𝑓(𝜓) , (7-24)

where 𝑓(𝜓) is given by Eq. (7-2) and ℋlin is a linear, complex

symmetric Hamiltonian. Yet, also the resulting Hamiltonian (7-24)
is still complex symmetric, i.e. Eq. (5-54) holds. In particular,

this means that left-hand and right-hand eigenstates are complex-

conjugate, which in turn again implies the property (5-55) for the
symmetrisation operators.

In analogy to Ref. [208], where a BEC in a 𝒫𝒯-symmetric double-

well potential is considered, the existence of symmetrisation op-

erators in non-linear systems can be considered by symmetrising

Eq. (7-24) via the condition (5-15) while assuming that the linear

part is always symmetrised; this yields

𝑆𝑓(𝜓) = 𝑓
†
(𝑆𝜓)𝑆 . (7-25)

However, as discussed in Section 7-1, a non-linear quantum

system has neither an orthogonal nor a bi-orthogonal basis any-

more. This is because only one eigenstate can be considered to

be a solution of the matrix obtained by using the very same state.

Thus, every state defines its own Hamiltonian matrix and one can-

not a priori expect to find the same symmetrisation operators for

multiple— let alone all— states, as it is possible in linear systems.

Instead, one finds that Eqs. (5-14) and (5-15) can still be satisfied,
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12
cf. Section 5-3 d)

but there exists a pair of symmetrisation operators 𝑆 and 𝑆 for

every single state with real energy eigenvalue. This corresponds

to symmetrised linear systems with rank𝑆 = rank𝑆 = 1. Though,

terms such as “rank” and “kernel” are no longer well defined be-

cause the states do not form a basis in non-linear systems. It may

thus seem preposterous to consider symmetrisation for non-linear

systems, as most of the information contained in the symmetrisa-

tion operators is redundant. Nevertheless, such systems formally

are semi-symmetrised and the evaluation of the symmetrisation

operators may still yield some physical insight as discussed below.

This does not only hold for states with real energy eigenvalues,

but also for complex-conjugate pairs, as such states share the same

symmetrisation operators for a non-linear system of the form (7-24)
with 𝑓(𝜓) ∝ |𝜓|

2
. This is because the absolute square is invariant

under complex conjugation,

⟨𝜓∣𝜓⟩ = ⟨𝜓∣𝜓⟩
∗
= ⟨𝜓

∗
|𝜓
∗
⟩ ,

i.e. the states |𝜓⟩ and |𝜓
∗
⟩, which correspond to complex-conjugate

energy eigenvalues for a complex symmetric system, share the

same non-linear Hamiltonian. Hence, for every eigenstate |𝜓⟩, for

which the non-linear functional 𝑓 satisfies the relation (7-25), the
corresponding eigenvalue should still be real or there should exist

another eigenstate corresponding to the complex-conjugate energy

eigenvalue which shares the same set of symmetrisation operators.

Because 𝑓(𝜓) = ⟨𝜓|𝜓⟩ is both scalar and real, Eq. (7-25) reduces
to 𝑓(𝑆𝜓) = 𝑓(𝜓), i.e. the non-linear functional must be invariant

under the insertion of the left-hand symmetrisation operator; an

equivalent condition can be obtained for the right-hand symmetri-

sation operator. Hence, symmetrisation operators are required to

be unitary
12

in the non-linear case. However, since symmetrisation

operators are also necessarily Hermitian, they are in fact involutory.

Hence, the symmetrisation operators must be part of the cyclic

group ℤ2 in general, which corresponds to generalisations of the

parity operator (5-46). The corresponding symmetries are anti-

linear like 𝒫𝒯 symmetry and its generalisations as discussed in

Chapter 5. It should be noted that these considerations do not

only hold for the specific non-linear functional (7-2), but for all
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functionals 𝑓 being invariant under a change of the global phase of

the wave function 𝜓.

In contrast to an actual symmetry like 𝒫𝒯 symmetry, though,

the separation of the linear and the non-linear parts represents a

special case. That is, a symmetry may involve the same operator in

both the linear and non-linear system. Symmetrisation, however, in-

volves completely different symmetrisation operators which depend

explicitly on the state solutions. Yet, the full non-linear problem

obtained by plugging Eq. (7-24) into the symmetrisation conditions

(5-14) and (5-15) cannot be solved by analytical means. Though,

it can still be solved by the method described in Section 5-5 a), if
suitable control parameters are known for which the Hamiltonian

possesses at least one real or two complex-conjugate energy ei-

genvalues. While this method is used and further discussed in the

following sections, one could also attempt to solve the complete

problem involving the Schrödinger eigenvalue equation (2-39) and
at least one of the symmetrisation conditions Eqs. (5-14) and (5-15).
This requires at least an (𝑛 + 1)

2
-dimensional root search for an

𝑛-mode system, assuming that all control parameters are known

already. For every additional control parameter an additional con-

dition has to be postulated, the nature of which is, however, not

a priori clear. For example, if one of the potential parameters is

free, one could require that one of the symmetrisation operators is

normalised, i.e. tr 𝑆 = 1.

Symmetrisation is now discussed explicitly in the context of

non-linear two-mode systems. In this case,ℋlin is given by the

Hamiltonian (6-9) combined with

𝑓(𝜓) = ⎛⎜
⎝

𝑔∣𝜓1∣
2

0

0 𝑔∣𝜓2∣
2
⎞⎟
⎠
, (7-26)

where the non-linearity parameter 𝑔 is considered to be equal in

both modes.

Under the assumption that Eq. (5-15) still holds for the linear
part, i.e. 𝑆ℋlin = ℋ

†
lin𝑆, the non-linear part has to satisfy the

symmetrisation condition separately as discussed in Section 7-3.
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The left-hand side of this equation yields

𝑆ℋ∣𝜓⟩ =
𝑔𝜅

2
⎛⎜
⎝

𝑆11 −𝑆12
𝑆21 −𝑆22

⎞⎟
⎠
,(7-27)

where 𝜅 = |𝜓1|
2
−|𝜓1|

2
is the imbalance between the two sites. Note

that the wave function is included explicitly, since the non-linear

term 𝜅 depends on the state on which the operators act. This is in

particular important when the right-hand side is evaluated, which

yields

ℋ𝑆∣𝜓⟩ =
𝑔𝜅𝑆
2
⎛⎜
⎝

𝑆11 −𝑆12
𝑆21 −𝑆22

⎞⎟
⎠

(7-28)

with

𝜅𝑆 = ∣(𝑆𝜓)1
∣
2
− ∣(𝑆𝜓)

2
∣
2
.

The only difference between Eqs. (7-27) and (7-28) is in the non-

linear terms 𝜅 and 𝜅𝑆. Therefore, the non-linear part of the

Hamiltonian can satisfy Eq. (5-15) if and only if 𝜅 = 𝜅𝑆. To satisfy

this condition, there exist two different scenarios:

1) For 𝜅 = 𝜅𝑆 = 0 one must require that |𝜓1|
2
= |𝜓2|

2
, i.e. both sites

are equally occupied, which has to be preserved by 𝑆. The equal

occupation of the sites in a non-Hermitian two-mode system

is a characteristic property of 𝒫𝒯 symmetry. Hence, one can

conclude that 𝑆 is either equal to the parity operator 𝒫 or is a

generalisation of it.

2) For 𝜅 = 𝜅𝑆 ≠ 0 one would demand that |(𝑆𝜓)𝑘| = |𝜓𝑘| for 𝑘 =

1,2. This case has already been described in Section 7-3 and
requires an involutory symmetrisation operator. While this is

still compatible with 𝒫𝒯 symmetry, it also allows for unequal

occupations of the two sites.
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13
Only in the 𝒫𝒯-

symmetric case the

real part of the spec-

trum is exactly sym-

metric.

7-4 Non-linear two-mode model

A general, non-linear two-mode model is described by the linear

Hamiltonian (6-9) combined with the non-linear term (7-26). How-
ever, this can be written in a more symmetric form by using Eq. (6-5)
instead [150] and by applying the non-linear energy shift [186]

𝛿𝐸 = −
𝑔

2
(∣𝜓1∣

2
+ ∣𝜓2∣

2
) . (7-29)

The Hamiltonian of the non-linear two-mode model then reads

ℋ(𝜓) = ⎛⎜

⎝

𝜖 + i𝛾(1 + 𝛿) +
𝑔
2(∣𝜓1∣

2
− ∣𝜓2∣

2
) −𝐽

−𝐽 −𝜖− i𝛾(1 − 𝛿) −
𝑔
2(∣𝜓1∣

2
− ∣𝜓2∣

2
)

⎞⎟

⎠
.

(7-30)
The energy shift (7-29) affects only the real part of the spectrum

which is now distributed “symmetrically”
13

around 𝐸 = 0. Another

advantage of Eq. (7-30) again is that the parameter 𝛿 naturally

describes perturbations of the 𝒫𝒯-symmetric system for 𝜖 = 0, as

already discussed in Section 6-1 c) for the linear model. Further,

the real potential can be described completely by one parameter 𝜖

due to the gauge freedom of the energy. This freedom is used once

again to make the real potential anti-symmetric, i.e. 𝜖1 = −𝜖2.

a) Non-linear 𝒫𝒯-symmetric two-mode model

The 𝒫𝒯-symmetric two-mode model is obtained from Eq. (7-30)
with 𝜖 = 𝛿 = 0 and can be solved analytically [186]. However, this

provides a suitable opportunity to test the implementation of the

numerical methods discussed in Section 7-1 a).
The numerically obtained complex eigenvalues of the non-lin-

ear, 𝒫𝒯-symmetric two-mode system are shown in Fig. 7-3 for

different values of the non-linearity parameter 𝑔. This immediately

reveal some fundamental differences between linear and non-linear

systems: While there exist only two solutions of the eigenvalue

problem (2-39) in a linear two-mode system, in the 𝒫𝒯-symmetric,

non-linear two-mode system there exist up to four solutions of the
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Figure 7-3: Real and
imaginary parts of

the eigenvalues of

the two-mode model

(7-30) with 𝜖 = 0 and
𝛿 = 0. The energies

are real for 𝛾 ≤ |𝛾𝑐|,

where |𝛾𝑐| decreases

for increasing values

of the non-linearity

strength. Here, solid

and dotted lines in-

dicate stable and un-

stable states, respec-

tively.
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form

𝜓 =
⎛⎜⎜

⎝

√1+𝜅
2 e

−i𝜑

√1−𝜅
2 e

i𝜑

⎞⎟⎟

⎠

(7-31)

with the imbalance 𝜅 introduced in Section 7-3 and a phase 𝜑.

Two of these solutions are real and exist for |𝛾/𝐽| ≤ 1. They

represent balanced gain and loss and require 𝜅 = 0, so that both

wells are equally occupied; this corresponds to exact 𝒫𝒯 symmetry.

However, for 𝛾
2
≥ 𝐽

2
−𝑔

2
/4, two complex solutions with 𝜅 ≠ 0 exist,

which are complex-conjugate to each other. These are the broken

𝒫𝒯-symmetric solutions which overlap with the 𝒫𝒯-symmetric

solutions for 𝑔 ≠ 0, so that four solutions occur simultaneously. It is

worth emphasising that the absolute value of 𝛾, at which complex

solutions arise, decreases with the strength of the non-linearity

parameter 𝑔; a similar property becomes quite important in Section

7-4 b).
Next, the stability of the states must be considered because the

system is both non-Hermitian and non-linear. Hence, there exist

two mechanisms for instability:

1) As discussed in Section 7-2, there exist both linearly stable and

unstable stationary states in non-linear systems.

2) Because there occur complex energy eigenvalues, the probability

density of the states can change in time, which is also considered
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Figure 7-4: Stability

eigenvalues for the

solutions of the non-

linear 𝒫𝒯-symmetric

two-mode model with

𝑔 = 1.5𝐽 as shown in

Fig. 7-3. For refer-

ence, the correspond-

ing imaginary parts of

the energy eigenval-

ues are shown using

different colours.
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𝜔

as being unstable with respect to stationarity. Additionally, an

ever growing state may also perturb other states in the system,

which can directly be observed in linear QM. This additional

effect is of particular importance in Sections 7-4 b) and 7-5.

The stability of the states in Fig. 7-3 is indicated by solid and

dotted lines which represent stable and unstable states, respectively.

Note that in contrast to the stability matrix from Ref. [186], the

Jacobian matrix (7-18) is used to determine the stability of the

states. The stability eigenvalues, which correspond to the different

states, are shown in Fig. 7-4 for the strong non-linear case with

𝑔 = 1.5𝐽. Due to the symmetry of the wave function, the stability

eigenvalues can occur only in complex-conjugate pairs for an exactly

𝒫𝒯-symmetric system.

As mentioned in Section 7-2 b), in a linear system all states are

stable in the range in which only real energies occur. However,

this property also holds for non-linear 𝒫𝒯-symmetric systems.

Stability changes occur only when the additional states appear,

which is indicated by the positive imaginary parts of the stability

eigenvalues in Fig. 7-4. In particular, this means that one of the

real states becomes unstable due to the occurrence of other states

with complex energy eigenvalues.
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Figure 7-5: Real and
imaginary parts of

the eigenvalues of

the asymmetric two-

mode model (7-30)
with the parameters

𝜖 = 0, 𝛿 = −0.2𝐽.

The real part is the

same as in Fig. 7-3,
but the imaginary

part is shifted. For

specific values of 𝛾

the formerly broken

𝒫𝒯-symmetric states

become real as indic-

ated by the circles.
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14
e.g. via the bisec-

tion method

b) Two-mode models with arbitrary gain and loss

If at least one of the parameters 𝜖 or 𝛿 of the two-mode model

(7-30) are chosen to be non-zero, the potential is rendered non-𝒫𝒯-

symmetric. For example, if 𝛿 ≠ 0, the imaginary potential becomes

asymmetric, while the real potential remains symmetric. Hence,

the properties of a 𝒫𝒯-symmetric system are lost, even though real

eigenvalues may still occur for suitable choices of 𝛾. In Ref. [150]

the authors demonstrate how an asymmetric imaginary part causes

a linear shift in the imaginary part of the energy eigenvalues, which

means that the formerly broken 𝒫𝒯-symmetric states become real

at some point as shown in Fig. 7-5. It should be emphasised, though,

that this does not coincide with the EPs at which the additional

solutions bifurcate, as can clearly be seen in the imaginary part.

The discussions of symmetrised linear systems in Chapter 5 show
that an asymmetric imaginary potential requires for an asymmetric

real part. This means that such a system is not symmetrised, even

if real solutions occur when either the real or imaginary part of the

potential is symmetric and the other is not. For a non-linear system

this can be shown numerically by calculating
14

the parameter

values of 𝛾 at which one state becomes real. To check whether

there exists a pair of symmetrisation operators, the determinant

of the coefficient matrices given in Eqs. (5-58), (5-59), (5-61) and
(5-62) must vanish, which is not the case for the stationary solutions
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Figure 7-6: Imagi-

nary parts of the en-

ergy eigenvalues for

a completely asym-

metric system due to

𝜖 = −0.15𝐽 and with

𝛿 = −0.2𝐽 for differ-

ent values of the non-

linearity strength 𝑔.

The solid lines again

indicate stable states,

while the dotted lines

are unstable.
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15
This value decreas-

es for an increasingly

non-linear system.

16
One can see that

this state may how-

ever become stable at

some point for 𝛾 ≪ 0.

shown in Fig. 7-5. Moreover, the usability of these stationary states

is limited because they are unstable.

Figure 7-6 shows the imaginary parts of the eigenvalues for

a completely asymmetric system for different values of the non-

linearity parameter 𝑔. The very same system has already been

investigated by Lunt et al. in Ref. [150] and serves as a preliminary

example. The system parameters are chosen such that stable real

states— indicated by the zero-crossings of the imaginary parts

drawn in solid lines— occur at specific values of the gain-loss

parameter 𝛾. For larger values of 𝑔 there occur bifurcations in the

imaginary part of the spectrum.

The real solutions for 𝛾 > 0 eventually become unstable if the

value of 𝑔 is large enough. This is because there occurs a stability

change in the corresponding state if the gain-loss parameter 𝛾

becomes too large.
15

This seems strange at first because stability

changes usually occur at EPs; however, this must not necessarily

be the case [187; 236]. The stability eigenvalues for both states

with 𝑔 = 1.5𝐽 are shown in Fig. 7-7. While one state remains

unstable for all parameters 𝛾 in the considered interval,
16

the

state considered in Fig. 7-6 is stable within a certain interval with

positive values of 𝛾 until one of its stability eigenvalues becomes
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Figure 7-7: Stabil-

ity eigenvalues 𝜔 for

the solutions of the

non-linear, asymmet-

ric two-mode model

for 𝑔 = 1.5𝐽. While

the state with energy

𝐸2 is unstable in the

whole interval due to

the imaginary parts

of the stability eigen-

values, there exists a

range with 𝛾 > 0 for

which the state with

energy 𝐸1 is stable.
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17
Except for in the vi-

cinity of an EP, the

qualitative behaviour

should not change for

small changes in the

system parameters.

18
To make gain and

loss exactly symmet-

ric is a challenge on

its own.

complex. The stability eigenvalues for the remaining states can

also be found in Ref. [150].

The location of the stable real solutions 𝛾s is of particular interest

because it depends on the value of the non-linearity parameter,

i.e. 𝛾s increases with 𝑔. At the same time, the wave function decays

for values 𝛾 < 𝛾s and grows for 𝛾 > 𝛾s. However, because the wave

function enters the Hamiltonian via the non-linear terms Eq. (7-2),
a change in the norm of the state has the same effect as a change in

the parameter 𝑔. That is, if the parameter 𝛾 in Eq. (7-30) increases,
for example, then the norm of the wave function starts to grow,

which shifts the value 𝛾s of the stable real state towards higher

values, so that the system becomes stationary and stable once

again; the same applies to a decrease of 𝛾. Hence, the two-mode

model possesses a self-stabilising mechanism via its non-linear part

[150].

This property is particularly suitable for experimental situations.

Under the assumption that the remaining system parameters are

setup within a certain— not necessarily high— precision,
17

the

value of 𝛾, in contrast, has to be tuned quite precisely—possibly

up to several digits of significance— to bring a linear system into a

stationary state. This is because in asymmetric systems the real

energy solutions do not occur in extended regions sharing the same

parameters, as opposed to 𝒫𝒯-symmetric systems.
18

However, in

a non-linear system the parameter 𝛾 could be tuned to a value in
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Figure 7-8: Occupa-

tions and the current

at the stable station-

ary states of the non-

linear two-mode sys-

tem shown in Fig. 7-6.
The ratio of the occu-

pations remains con-

stant, while the cur-

rent increases with

𝛾 to compensate the

increasing gain and

loss.
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19
This stems from the

fact that the states

are normalised to 1.

the proximity of 𝛾s for fixed system parameters. From then on, the

non-linear system can stabilise itself.

Figure 7-8 illustrates the occupations |𝜓𝑘|
2
at each site 𝑘 = 1,2

of the two-mode model as well as the current 𝑗 between the two

sites at the stable stationary solutions in Fig. 7-6, at which the

imaginary part of the eigenvalues vanish. It is remarkable that

the occupations of the two states are distributed symmetrically

around
19
|𝜓|

2
= 1/2 and that their ratio remains constant for differ-

ent values of the gain-loss parameter 𝛾. Actually, this is quite similar

to the 𝒫𝒯-symmetric two-mode system, in which the two states

(7-31) are also symmetrically distributed and their ratio is given by

|𝜓1|
2
/|𝜓2|

2
= (1 +𝜅)/(1 −𝜅) with the occupation imbalance 𝜅 ≠ 0;

it makes sense that the asymmetric potential also corresponds to

an asymmetric initial occupation instead of a symmetric one as for

the 𝒫𝒯-symmetric solutions. Thus, the real energy solutions can

be considered to possess both properties of exact and broken 𝒫𝒯

symmetry simultaneously.

The current between the two sites of the non-linear two-mode

model shown in Fig. 7-8 is, of course, also stationary. However,

in contrast to the occupations, it changes with 𝛾. This is a conse-

quence of the increased gain and loss and is necessary to ensure

that the system remains stationary. The capability of a system

to accommodate a suitable current is essential for its ability of

balancing the applied gain and loss.
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Figure 7-9: While a)

three real eigenval-

ues coincide in the lin-

ear three-mode sys-

tem, b) real solutions

occur only individu-

ally at different val-

ues of 𝛾1 in the non-

linear case. The gain-

loss parameters 𝛾2
and 𝛾3 are chosen ac-

cording to Eqs. (7-33)
and (7-34).

−1 0 1

𝛾1/𝐽

−0.4

−0.2

0.0

0.2

0.4

Im
𝐸
/
𝐽

a) 𝑔/𝐽 = 0

𝐸1
𝐸2
𝐸3

−1 0 1

𝛾1/𝐽

b) 𝑔/𝐽 = 0.1

0 0

7-5 Non-linear three-mode model

In analogy to Chapter 6, also non-linear systems with additional

wells can be considered. However, the challenges which arise

in non-linear systems and which were discussed in Section 7-1
provide increasing difficulties for larger non-linear multi-well sys-

tems and the numerical effort also increases with the system size.

Nevertheless, the solutions of a non-linear three-mode model can

still be obtained and a brief discussion of some of its features now

follows. In Section 11-4 also larger non-linear multi-mode systems

are considered in the context of resonator chains.

The discrete Hamiltonian for a triple-well potential is given by

Eq. (7-3) with 𝑛 = 3, i.e.

ℋ=
⎛⎜⎜⎜⎜⎜

⎝

𝜖1 + i𝛾1 +𝑔∣𝜓1∣
2

−𝐽 0

−𝐽 𝜖2 + i𝛾2 +𝑔∣𝜓2∣
2

−𝐽

0 −𝐽 𝜖3 + i𝛾3 +𝑔∣𝜓3∣
2

⎞⎟⎟⎟⎟⎟

⎠

,(7-32)

which corresponds to the linear three-mode Hamiltonian (6-22).
The eigenvalues of the non-linear matrix (7-32) can be calculated

as before with the methods described in Section 7-1 a). In contrast

to the non-linear two-mode systems discussed in Section 7-4 b), it
is not a priori clear whether there occur multiple stationary states

simultaneously or not.
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Figure 7-9 shows the spectrum of the linear three-mode model

with 𝑔 = 0 in comparison with the spectrum of a non-linearly

perturbed system with 𝑔 = 0.1𝐽. The parameters are chosen as

𝜖1 = −0.6𝐽, 𝜖2 = 0, and 𝜖3 = 𝐽 as well as

𝛾2 = −1.6𝛾1 , (7-33)

𝛾3 = 0.6𝛾1 (7-34)

parametrised by 𝛾1. While three real solutions coincide at the

value 𝛾1 ≈ 0.81𝐽 as in the linear case shown in Fig. 7-9a)—a fully

symmetrised system— the non-linear terms cause a distribution of

the individual eigenvalues to different parameter values as shown

in Fig. 7-9b). Hence, to find multiple real solutions simultaneously,

the parameters must again be chosen quite specifically, which

may be achieved with the non-linear symmetrisation conditions

discussed in Section 7-3. Moreover, the states shown in Fig. 7-9
are rendered unstable even in the case of the rather modest non-

linearity strength used here. This is caused to some extend by the

larger number of different parameter choices, i.e. there exist more

possibilities to use adverse combinations of parameters. However,

the complexity of the system also increases and there exist two

currents in the system which are responsible for compensating

the gain and loss at each site, respectively, as discussed in Section

7-4 b). The three-mode system can thus be considered as being

more fragile than the two-mode model, as the system now has to

maintain two currents instead of one, which doubles the possibilities

for failures.

As discussed before, the parameters of the non-linear three-mode

model have to be chosen precisely to obtain multiple stationary

states at once. This is illustrated in Fig. 7-10 for a slightly different

system with an anti-symmetric real potential described by the

parameters 𝜖1 = −𝜖3 = 0.6𝐽 and 𝜖2 = 0. While 𝛾2 = −0.5𝐽

remains unchanged, the order of the real solutions with respect

to 𝛾1 changes between 𝛾3 = 0.3𝐽 in Fig. 7-10a) and 𝛾3 = 0.4𝐽 in

Fig. 7-10b). More precisely, the trajectory of the eigenvalue 𝐸1
crosses the real solution of 𝐸3 at 𝛾1 ≈ 0.36𝐽 and 𝛾3 ≈ 0.37𝐽. While

this shows that multiple stationary states can occur simultaneously

just as in the linear case, one also finds that the solutions are again
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Figure 7-10: Imag-

inary parts of the

solutions of the asym-

metric three-mode

model with 𝑔 = 0.1𝐽

and 𝛾2 = −0.5𝐽. The

real solutions of 𝐸1
and 𝐸3 must coincide

at some value of 𝛾3
between a) and b).
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Because of the pa-

rametrisation (7-35),
the parameter 𝛾3 is a

measure of the over-

all gain and loss.

unstable because there are other states which are exponentially

growing and thus destabilise the system. Therefore, such solutions

cannot be considered as being stationary.

The non-linear three-mode model (7-32) possesses also stable
stationary solutions as shown in Fig. 7-11; here, the onsite-potential
parameters are chosen as 𝜖1 = 0.1, 𝜖2 = 0, and 𝜖3 = −0.6 and the

gain-loss parameters are now parametrised by 𝛾3 via

𝛾1 = −𝛾2 = 0.6𝛾3 .(7-35)

There are extended regions in which stable states occur, even in

cases with larger values of the non-linearity parameter 𝑔. In fact,

there exists at least one stable state for every value 𝛾3 < 0; yet,

because the corresponding eigenvalues are complex in most of the

cases, they are not of physical interest. There also occur stationary

solutions; however, for 𝑔 ≠ 0 they are only stable for 𝛾3 > 0. Just

as for the two-mode model, the position of the stationary states

with respect to the gain-loss parameter
20
𝛾3 depends on the non-

linearity strength 𝑔. Because the state is growing for stronger gain

and loss and decaying otherwise, the three-mode system shows the

same self-stabilising mechanism as the two-mode system shown in

Fig. 7-6.
The similarities between the two scenarios in the two-mode

model shown in Fig. 7-6 and in the three-mode model shown in

Fig. 7-11 are astonishing. Just as in the two-mode model, stable
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Figure 7-11: Imagi-

nary parts of the solu-

tions of the asymmet-

ric three-mode model.

Solid lines indicate

the stable regions for

𝛾3, in which also sta-

ble stationary states

occur for different val-

ues of the non-linear-

ity strength 𝑔. If 𝑔 be-

comes large enough,

though, the station-

ary solutions become

unstable.
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real solutions occur where all other energy eigenvalues possess

negative imaginary parts, i.e. other states will decay exponentially

and thus cannot lead to perturbations of the stationary states.

The reason for this striking resemblance can be understood with

Fig. 7-12: The occupation of and the current to the third site are

rather small in comparison with the other two sites. Hence, the

first two two sites act similar to a two-mode system. This can

also be seen by comparing their occupations and current shown in

Fig. 7-11 to those of the two-mode model in Fig. 7-8. Yet, there are

Figure 7-12: Occu-

pations and currents

at the stable station-

ary solutions of the

three-mode system in

Fig. 7-11. For the

stronger non-linear-

ities the first two

wells isolate them-

selves from the third

well because both its

occupation and cur-

rent decrease.
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clear differences, like the fact that the occupations are changing

with the non-linearity strength 𝑔. This is because the presence of

the third well causes a perturbation the “two-well system”. Thus,

Figs. 7-11 and 7-12 show genuine solutions of the asymmetric three-

mode model, but with similar properties as a non-linear two-mode

system.

The discussions above show that stationary states still occur

even if the system under consideration are non-linear and non-

symmetric. Although these states are isolated for the most part,

meaning that the remaining states are non-stationary, they exhibit

remarkable properties which enable the system to become self-

stabilising. This property is particularly beneficial for real, physical

scenarios like actual experiments or technical applications, an

example of which is considered in Chapter 8.
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1
Since the reservoir

modes are also cou-

pled, this can be con-

sidered as two inter-

acting two-mode sys-

tems, cf. Ref. [242].

Experimental realisation 8
Last but not least, it should briefly be discussed how the symmetric

and symmetrised quantum systems introduced in Chapters 6 and 7
can be realised experimentally. For this, the literature concerning

𝒫𝒯-symmetric systems is considered, as it should in most cases

be possible to disturb the potentials asymmetrically in such a way

that the system becomes symmetrised.

The first experimental realisations of𝒫𝒯 symmetry succeeded in

optical systems [106; 184; 237–241], but it was later also observed,

among other fields, in mechanical [1; 107] and electrical [108; 109]

systems. However, since the very first experimental demonstration

in optical wave guides in 2009 [106], it took a whole decade to

realise 𝒫𝒯 symmetry in multi-mode spin systems [110–112], i.e. in

actual quantum systems. The three-mode spin systems in Refs. [110;

112] are equivalent to an effective two-mode system in which both

modes are coupled to the same reservoir mode; this corresponds to

passive 𝒫𝒯 symmetry, i.e. the system exhibits only absolute losses

but can be mapped to an effective system with relative gain and

loss. The four-mode spin system in Ref. [111], on the other hand, is

realised via an NV centre in diamond, which corresponds to a two-

mode system in which each of the two modes is coupled to its own

reservoir mode;
1
i.e. this is a genuine effective quantum system

with gain and loss.

8-1 𝒫𝒯-symmetric double well

One of the first proposals for the realisation of 𝒫𝒯 symmetry actu-

ally was made even ealier by Klaiman et al. [237]. They considered

a BEC in a laser generated optical double-well potential [243; 244]

to be an appropriate candidate to realise𝒫𝒯 symmetry in a genuine

quantum system with gain and loss, for which the experimental

techniques had already been developed [245; 246]; gain and loss
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2
cf. Section 4-2 of particles in BECs also correspond to imaginary potentials

2
[247].

BECs are well suited to bring the quantum behaviour of matter

from the microscopic world into macroscopic scales, which allows

for direct observations of quantum effects. The low temperatures

required for the formation of BECs of actual particles, which typic-

ally are in the vicinity of the absolute zero [248], can be created

by laser cooling methods. The experimental techniques are so

advanced and robust nowadays that a BEC of Rubidium atoms

could recently even be created on the International Space Station

in earth’s orbit [249]; the micro-gravity environment enhances

the stability of the condensate, which allows for weaker trapping

potentials. Moreover, by using quasi-particles, a BEC can also be

realised at room temperature [250–252], which could make such

experiments even more accessible.

Another advantage of this approach lies in its simplicity and flex-

ibility. That is, optical multi-well potentials can easily be created by

using counter-propagating laser beams [253; 254] or by “painting”

them in the time average with a rapidly moving laser beam [255];

the latter method allows not only for the creation of dynamical—

i.e. time-dependent—potentials, but also for arbitrary asymmetric

potentials as considered in this thesis. Afterwards, a BEC can be

loaded into the optical potential [256]. Because they are created

via lasers, optical multi-well potentials allow for a large amount

of control and precision, both of which are required to realise the

symmetrised systems discussed in Chapters 6 and 7.
While the 𝒫𝒯-symmetric double-well potential is well investig-

ated theoretically [183; 185–187; 194; 195; 207; 208; 257; 258], an

experimental realisation has not been accomplished so far. This can

be attributed to the fact that the experimental realisation of gain in

a specific potential well is rather difficult, as it requires the feeding

of atoms from another condensate into the potential well. This can,

for example, be achieved via gravity, i.e. the atoms “trickle” into

the potential well [245; 259]. In contrast, the realisation of loss can

simply be achieved by means of a focused electron beam [246; 260;

261] which “knocks” condensate particles out of the potential well.

Hence, systems exhibiting just localised loss are easier accessible.
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Figure 8-1: An effect-

ively open few-mode

subsystem can be em-

bedded into a multi-

well potential by suit-

ably engineering the

interactions between

them.

⋯ ⋯

effective system

+i𝛾1 −i𝛾2

3
cf. Section 4-6

As shown in Refs. [185; 187; 208], the formalism of𝒫𝒯 symmetry

can be applied to non-linear quantum systems which can develop

stable, 𝒫𝒯-symmetric states [258]. The non-linear term (7-2) in
the GPE, which is used for the description of BECs, represents

contact interactions between the condensate particles; it can be

tuned—and also set to zero—via Feshbach resonances [92; 93]. In

more recent works the use of bounded and unbounded states [262]

or coupling to another BEC [242] were suggested to realise 𝒫𝒯-

symmetric double-well systems with coherent in and out-coupling of

particles. However, both of these methods are also rather difficult

to implement experimentally.

8-2 Embedded few-well systems

Since the realisation of real gain is experimentally demanding, one

could also resort to cases with effective gain. That is, the interaction

between a subsystem and an explicitly modelled environment is

tuned such that the subsystem effectively corresponds to an open

quantum system.
3
Thus, the environment must explicitly be taken

into account— at least to some degree— and the interactions

between system and environment have to be engineered minutely.

While the overall system is Hermitian, the subsystem is effectively

non-Hermitian. In fact, all of the systems described in Refs. [111;

112; 143], which were discussed in the introduction of this chapter,

are examples for effective two-mode models.

In the case of optical multi-well potentials, this scenario is

illustrated in Fig. 8-1. Here, a subsystem of two wells can be

considered as an effective double-well potential, if the tunnelling

currents into and out of the subsystem are tuned such that they have

the same effect as imaginary gain and loss terms, e.g. see Refs. [192;
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4
This assumption is

commonly called the

Markov property and

refers to the memory-

lessness of the envir-

onment.

5
The effects caused

due to the changes

in the out-coupling

reservoir can be cor-

rected via the time-

dependent potential

parameters.

6
cf. Eq. (4-5)

193; 209; 262–264]. Usually, the environment is considered to be

very large, so that it does not change due to the interactions with

the system.
4
However, if the parameters of the optical potential

are varied in a time-dependent manner based on the current state

of the system, a single reservoir well at each side of the system,

respectively, is sufficient to simulate an open two-mode system in

the mean-field approximation [192; 263] and beyond [193; 264].

Although this approach effectively allows for the realisation of 𝒫𝒯

symmetry as long as the the in-coupling reservoir is non-empty,
5

the experimental setup is again rather demanding due to the time-

dependent optical potentials.

In Ref. [179] an experiment with a time-independent optical

potential is proposed. The basic idea is that only the gain term

has to be simulated, while an actual particle loss can easily be

created via an electron beam [261]. Hence, the loss term actually

removes particles from the system and does not cause any ill effects.

However, this again requires a large reservoir and also the precise

control over the initial state of the condensate; that is, if the BEC is

suitably prepared, an effectively open, embedded few-mode system

can be simulated for a finite amount of time until the changes in

the in-coupling reservoir becomes noticeable. This is crucial, in

particular, for the relative phases of the condensate wave functions

between adjacent wells, as they determine the initial currents in

the system.
6
Such large optical multi-well potentials are realisable

experimentally [265] and effectively show balanced gain and loss;

though, they are not per se 𝒫𝒯-symmetric.

To conclude this discussion, the methods described in this chap-

ter are, in principle, suitable to realise effectively open few-mode

quantum systems experimentally. Until now, an actual experimental

realisation of such a system still remains a standing goal. While a

𝒫𝒯-symmetric scenario appears to be a first logical step towards

more general systems with balanced gain and loss— in particu-

lar, because 𝒫𝒯-symmetric systems are allegedly simpler— the

requirement of exact symmetric potentials might even require

further experimental rigour. It could thus be beneficial to start with

a symmetrised BEC with contact interaction instead as proposed in
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7
cf. the introduction

of this chapter

Ref. [150], which exploits the self-stabilising mechanism described

in Section 7-4 b).
The difficulties described above mostly arise due to the nature of

QM; that is, it is far from being trivial to prevent a quantum system

from loosing its properties due to decoherence. In other—non-

quantum—fields the application and realisation of 𝒫𝒯 symmetry

is simpler.
7
However, also non-𝒫𝒯-symmetric non-Hermitian poten-

tials were realised recently in classical systems via pressure waves

[139]. Hence, it might be feasible to find suitable applications of

symmetrisation outside of QM, which is the topic of the second

part of this thesis.
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Part II

Electromagnetic systems

More important than all of this, however, will be

the transmission of power, without wires, which

will be shown on a scale large enough to carry

conviction.

Nikola Tesla

—The Future of the Wireless Art





1
cf. Fig. 9-1

2
e.g. see Ref. [275]

3
An example is given

by wearable medical

sensors [276].

4
cf. Refs. [277–280]

5
Unlike for signals,

an omni-directional

transmission is unfit

for WPT.

Introduction to the

second part

9
The plot thickens.

Sherlock Holmes

—A Study in Scarlet

The concepts of NHQM and, in particular, 𝒫𝒯 symmetry discussed

in the first part of this thesis were used for some astounding

applications in recent years. Some of them, like the realisation of

invisible structures [138; 267–269] or completely efficient wireless

power transfer (WPT) [125; 126], could equally belong to the realm

of science fiction.

Any sufficiently

advanced technology

is indistinguishable

from magic.

Arthur C. Clark

One of the pioneers of WPT was Nikola Tesla [270–273]. In

1890, Tesla first demonstrated wireless lighting via inductive and

capacitive coupling [274]. Later, he continued working on long-

range wireless power transmission via high-voltage, high-frequency

alternating current [273]. This led him to pursuing his idea of a

global WPT— the world wireless system
1
—which should transmit

both information and power through the earth and the atmosphere

[270]; though, this could not be finished due to a series of unfortu-

nate events.
2
Since then, WPT has already become a part of our

daily lives, as it is used for charging toothbrushes, mobile phones,

or other devices and even more technologies might also make use

of WPT in the future.
3

Essentially, there are two major types of WPT technologies,
4

both of which were used by Tesla already:

1) Radiative transmission via a focused
5
microwave beam or a

laser is suitable for long-range power transfer [281].

2) Non-radiative transmission using either capacitive or inductive

coupling is suitable for short to mid-range power transfer [282].
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Figure 9-1: The

Wardenclyffe Tower

[266] was the vision

about the possibility

to avail energy every-

where without wires.

Built in 1901, it stood

∼57m tall until its

demolition in 1917.

The efficiency of WPT can be improved by means of resonance

and piezoelectric effects [278]. It can be improved even further by

using effects of NHQM. For example, the efficiency of autonom-

ous thermal motors can be maximised when they operate in the

vicinity of an EP [283], which occur only in non-Hermitian systems.

Similarly, the efficiency of stable WPT was observed to be optimal

for a 𝒫𝒯-symmetric system [125]. Hence, it may be of interest

to apply other concepts from NHQM discussed in the first part of

this thesis to electrodynamics (ED). Physical states for stable WPT

in non-Hermitian systems are discussed in Chapter 11. However,
beforehand a suitable description of WPT systems is required.

In contrast to quantum systems, which are described by the

Schrödinger equation (2-38) which contains a first-order time

derivative, systems in ED are commonly described either by a wave

equation,

(𝜕2𝑡 − 𝑐
2∇2)𝑢(�̂�, 𝑡) = 0 ,
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6
In fact, Ref. [284] ap-

pears to be the only

work which contains

a rigorous treatment.

or by an oscillator equation,

(𝜕
2
𝑡 +𝜔

2
0)𝑢(𝑡) = 0 ,

both of which contain a second-order time derivative, respectively.

A resonant circuit can also be described approximately by a mode

equation; though, its derivation is subtle and not well covered in

the literature.
6
Hence, Chapter 10 is dedicated to a rather detailed

derivation of the multi-mode model of coupled electric resonators.
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𝐶

𝐿

Figure 10-1: A reson-

ant circuit

1
A harmonic oscilla-

tor equation for the

current can analog-

ously be derived with

Kirchhoff’s first law.

Coupled electric

resonators

10
An electrical circuit which contains both a capacitor with capacity𝐶

as well as an inductor with inductance 𝐿 acts as an oscillator. This

is because capacitors and inductors modify the relation between the

current 𝐼(𝑡) and the voltage 𝑈(𝑡) at a given time 𝑡 in an electrical

system:

— A capacitor has to be charged or discharged by the current 𝐼(𝑡)

over time. Hence, the voltage 𝑈(𝑡) follows the changes in the

current 𝐼(𝑡),

d𝑈

d𝑡
= −

𝐼

𝐶
. (10-1)

— The current 𝐼(𝑡) in an inductor, on the other hand, creates a

magnetic field which counteracts the current and thus delays

changes due to it. In this case the current 𝐼(𝑡) follows the

changes in the voltage 𝑈(𝑡),

d𝐼

d𝑡
=
𝑈

𝐿
. (10-2)

Such an electrical circuit is shown in Fig. 10-1 and can be described
by the second-order differential equation

d
2
𝑈

d𝑡2
+𝜔

2
0𝑈 = 0 (10-3)

that is obtained by using Kirchhoff’s second law. Due to the prop-

erties described above the energy in such a circuit is alternat-

ing between the capacitor and the inductor. Hence, such a sys-

tem represents an electrical oscillator with resonance frequency

𝜔0 = 1/√𝐿𝐶, where Eq. (10-3) corresponds to a harmonic oscillator

equation for the voltage.
1
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2
cf. Eq. (10-2)

The solutions of Eq. (10-3) are given by

𝑈(𝑡) = 𝑈(0) e
i𝜔0𝑡 ,(10-4)

which immediately yields
2

𝐼(𝑡) = −i𝜔0𝐶𝑈(0)e
i𝜔0𝑡 .(10-5)

Both solutions are oscillating in time with a relative phase shift of

arg(−i) = −𝜋/2.

10-1 Resonator modes

While the description of the system via current and voltage is

perfectly fine, it is convenient to combine these quantities [284],

i.e. 𝑈+𝛼𝐼 with a yet to be determined constant 𝛼. With Eqs. (10-1)
and (10-2) one finds

d

d𝑡
(𝑈−

𝐿

𝛼𝐶
𝐼) = −

1

𝛼𝐶
(𝑈+𝛼𝐼) ,

which appears unnecessarily complicated at a first glance. However,

for 𝛼
−2
= −𝜔

2
0𝐶

2
two uncoupled, first-order differential equations

are found,

d𝑎±
d𝑡

= ±i𝜔0𝑎± ,(10-6)

where

𝑎± = √
𝐶

23
(𝑈±

i𝐼

𝜔0𝐶
) .(10-7)

Here, the choice of the prefactor √𝐶/23 in Eq. (10-7) does not
change Eq. (10-6), however, the intention will become clear shortly.

Since the two first-order differential equations (10-6) are equiv-
alent to the second-order differential equation (10-3), the same

must also hold for their solutions. With the solutions (10-4) and
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3
This is due to the

specific prefactor in

Eq. (10-7).

𝑅

𝐶

𝐿

Figure 10-2: Reson-

ant circuit with loss

4
Typical metals have

a resistivity in the or-

der of 𝜌 ∼ 10
−8

[285].

(10-5) for the voltage and the current the solutions (10-7) read

𝑎+ = √
𝐶

2
𝑈(𝑡) e

i𝜔0𝑡 , (10-8)

𝑎− = 0 . (10-9)

That is, the solution (10-9), which corresponds to the negative

frequency in Eq. (10-6), does not yield any information. This does

also manifest in the fact that the differential equations (10-6) are
not independent but merely complex-conjugates of each other. The

positive-frequency solution (10-8), on the other hand, corresponds

to the square root of the energy stored in the resonator,
3
i.e.

∣𝑎+∣
2
=
𝐶𝑈

2
(0)

2
=𝑊.

Therefore, Eq. (10-6) corresponds to a single-mode system and

Eq. (10-8) is thus called the mode amplitude [284]; in the following,

the index is dropped, i.e. 𝑎 ≡ 𝑎+ with

d𝑎

d𝑡
= i𝜔0𝑎 . (10-10)

10-2 Resonators with loss

While a capacitor and an inductor are, in principle, the only require-

ments for an electric resonator, Fig. 10-1 shows only an idealised

circuit. That is, all non-superconducting materials possess a non-

zero resistivity
4
𝜌 which leads to an intrinsic resistance 𝑅. Hence,

any real circuit will suffer from intrinsic losses. To account for

the intrinsic resistance of the wires, an additional resistor may be

introduced as shown in Fig. 10-2.
It is reasonable to assume that the major contribution to the

intrinsic resistance of a resonant circuit comes from the inductor.

For𝑁 wire loops with radii 𝑅w and wire radius 𝜌w the intrinsic

resistance of a resonator can be estimated by

𝑅 = 2𝑁𝜌
𝑅w
𝜌2w

, (10-11)
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which depends on the ratio between the length and the cross section

of the wire.

The presence of a resistance can be accounted for by introducing

a loss term in Eq. (10-10), which is of the same form as the loss

terms discussed in Chapters 6 and 7, i.e.

d𝑎

d𝑡
= i𝜔0𝑎 − 𝛾𝑎 ,(10-12)

where 𝛾 = 1/𝜏 is the loss factor which is given by the inverse

of the decay rate 𝜏. To obtain an expression for the decay rate,

Kirchhoff’s first law can be considered for the modified circuit

shown in Fig. 10-2,

d
2
𝐼

d𝑡2
+
𝑅

𝐿

d𝐼

d𝑡
+𝜔

2
0𝐼 = 0 .

With an ansatz of the form 𝐼(𝑡) = 𝐼(0) exp(i𝜔𝑡) one finds

i𝜔 = ±i𝜔0
√1 −

𝑅2𝐶

4𝐿
−
𝑅

2𝐿
.(10-13)

This represents a damped oscillator: The real part of Eq. (10-13)
causes the current to decay over time. For𝑅 < 2√𝐿/𝐶 the first term

is imaginary and represents the modified resonance frequency; for

𝑅 ≥ 2√𝐿/𝐶, though, there occurs no oscillation at all.

The modification of the resonance frequency in Eq. (10-13)
is caused only indirectly by the resistor. Actually, the two first-

order differential equations (10-6) are no longer uncoupled in the

presence of a resistor, i.e. the two mode amplitudes 𝑎± are now

coupled. However, for 𝑅≪ 2√𝐿/𝐶, which corresponds to a small

loss, the square root can be approximated by its Taylor series,

which yields

i𝜔 = ±i𝜔0 −
𝑅

2𝐿
+𝒪(𝑅

2
) ≈ i𝜔0 −

1

𝜏
.

This corresponds to the approximation that the single-mode equa-

tion (10-10) is modified separately by a loss term with decay rate

𝜏 = 2𝐿/𝑅. Hence, the corresponding loss term 𝛾 ∝ 𝑅 introduced in

Eq. (10-12) must be considered as being just an approximation.
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𝐶

𝐿
𝑠+

𝑠−

Figure 10-3: Reson-

ant circuit with gain

5
The actual mechan-

ism is not really im-

portant here.

6
The proportionality

constant may be cho-

sen such that |𝑠+|
2

describes the energy

carried by the incid-

ent wave.

10-3 Resonators with gain

So far, the resonant circuits were treated with the implicit assump-

tion that some amount of energy is already stored within them and

which causes the existence of a current. However, such circuits are

per se “empty” and one has to introduce a mechanism to increase

the mode energy, or in other words, a mechanism for gain.

A resistor leads to a loss of energy in a resonator due to friction

and consequently the emission of heat. A corresponding component

for gain should effectively behave exactly like the opposite, which

implies that such a component—some kind of power source, for

example—acts as if it would possess a negative intrinsic resistance

𝑅 < 0. However, in contrast to the introduction of loss in Section

10-2, it is not quite as simple to relate a corresponding gain term to

an actual physical circuit. For this, an ideal resonator is coupled to

some device
5
via a transmission line in the following, which can be

considered as a wave guide. Such a transmission line is illustrated

in Fig. 10-3 and introduces some immediate effects:

1) Energy can enter the system in form of an incident wave 𝑠+
that excites the mode amplitude and thus increases the energy

stored in the resonator. Thus, this actually corresponds to gain.

2) Energy can also leave the system via the leaking wave 𝑠−. This

introduces a decay rate similar to a resistor and thus also

corresponds to loss.

The loss term due to the leaking wave 𝑠− can be accounted for

in the same manner as in Eq. (10-12). The rate of change of the
energy in the resonator may thus be written as

d𝑎

d𝑡
= i𝜔0𝑎 − 𝛾𝑎 + 𝑘𝑠+ , (10-14)

where 𝑘 describes the coupling between the mode amplitude 𝑎 and

the incident wave 𝑠+. Assuming that the incident wave oscillates

at frequency 𝜔, i.e.
6
𝑠+ ∝ exp(i𝜔𝑡), the response of the mode

amplitude will occur at the same frequency, i.e. 𝑎 ∝ exp(i𝜔𝑡);

hence,
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7
at least for lossless

media, that is

8
For 𝑡 > 0, though,

|𝑎
′
|
2
grows, while |𝑎|

2

decays.

9
In the second step

|𝑎/𝑏| = |𝑎|/|𝑏| is used,

since the considered

system is classical.

𝑎 =
𝑘𝑠+

i(𝜔 −𝜔0) + 𝛾
.(10-15)

The parameters 𝑘 and 𝛾 are, in fact, not independent [284]. To

uncover their relation, one might remember that ED is invariant

under time reversal
7
as discussed in Section 2-3 a). If there is no

incident wave 𝑠+, then the circuit will experience only loss and

thus corresponds to the same scenario shown in Fig. 10-2. This
can also be described by the leaking wave 𝑠− for which

d

d𝑡
|𝑎|
2
= −2𝛾|𝑎|

2
= −∣𝑠−∣

2

holds due to the conservation of the energy. Under time reversal the

leaking wave 𝑠− becomes an incident wave 𝑠
′
+, which then drives

the system with the frequency 𝜔
′
= 𝜔0 − i𝛾; i.e. the energy grows

as𝑊 ∝ exp(2𝛾𝑡). Here, the prime indicates quantities associated

with the time-reversed solution

𝑎
′
=
𝑘𝑠

′
+

2𝛾
,(10-16)

which can be obtained with Eq. (10-15). As discussed above, it

should be required that Eq. (10-16) corresponds also to the positive
frequency. However, since time reversal acts as a complex conjuga-

tion, it exchanges the positive and negative frequency components;

hence, Eq. (10-16) must be the time-reversed solution of the negat-

ive mode amplitude 𝑎−. Further, time reversal changes only the

direction of a wave in the transmission line but not its amplitude,

i.e. |𝑠
′
+|
2
= |𝑠−|

2
. At the initial time 𝑡 = 0 also the mode amplitudes

are equal,
8
i.e. |𝑎

′
|
2
= |𝑎|

2
. Therefore,

∣𝑠
′
+∣
2
= ∣𝑠−∣

2
= 2𝛾|𝑎|

2
= 2𝛾∣𝑎

′
∣
2

at 𝑡 = 0. With Eq. (10-16) one finally finds9

∣𝑘∣
2
= 4𝛾

2
∣
𝑎
′

𝑠′+
∣

2

= 4𝛾
2 ∣𝑎

′
∣
2

∣𝑠′+∣
2
= 2𝛾 ,

i.e. |𝑘| = √2𝛾 is the desired relation. Because 𝑘 and 𝑠+ occur only

in combination, their relative phase can be chosen arbitrarily, so
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10
e.g. see Ref. [284]

11
e.g. because of the

intrinsic resistance of

the resonator circuit

that 𝑘 = √2𝛾 without a loss of generality, i.e.

𝑎 =
√2𝛾𝑠+

i(𝜔 −𝜔0) + 𝛾
. (10-17)

a) The reflection coefficient

The incident wave and the leaking wave introduced by the trans-

mission line in Fig. 10-3 are not independent. That is, the leaking
wave can only depend on the incident wave and thus describes its

reflection. This can be characterised with the reflection coefficient

which is defined as the ratio between the incident wave 𝑠+ and the

leaking wave 𝑠− in the resonator,
10

𝛤 =
𝑠−
𝑠+

= √2𝛾
𝑎

𝑠+
− 1 . (10-18)

With the response to the incident wave (10-17) the reflection coeffi-

cient (10-18) can be written as

𝛤 =
𝛾− i(𝜔−𝜔0)

𝛾 + i(𝜔 −𝜔0)
. (10-19)

This immediately reveals that 𝛤 = 1 for 𝜔 = 𝜔0; in other words,

total reflection occurs for resonant in-coupling.

The reflection coefficient (10-19) corresponds to an ideal reson-

ator without intrinsic losses. However, if an intrinsic loss occurs,
11

which is described by 𝛾0, the response to a resonant incident wave

is modified,

𝑎 =
√2𝛾𝑠+
𝛾 + 𝛾0

.

The reflection coefficient (10-18) then reads

𝛤 =
𝛾− 𝛾0
𝛾 + 𝛾0

,

which vanishes for 𝛾0 = 𝛾, so that there occurs no reflection at all.
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𝑀𝐼1

𝐼2

Figure 10-4: Coupled
resonant circuits

12
cf. Appendix H-3

13
cf. Chapter 11

14
cf. Eq. (H-7)

15
Though, this beha-

viour highly depends

on the geometric ar-

rangement.

16
Actually, this is a

consequence of the

reciprocity theorem.

17
cf. Appendix H-1

10-4 Inductive coupling

In addition to the direct excitation of an electric resonator via a

transmission line as introduced in Section 10-3, energy can also be

transferred into a circuit by means of induction.
12

Consider two

resonant circuits as shown in Fig. 10-4. An alternating current 𝐼1 in
the primary resonator will create a time-dependent magnetic field

which induces an alternating current 𝐼2 in the secondary resonator.

The same argument also applies to the current 𝐼2, of course, which

in turn affects the primary circuit; thus, the two resonators are

coupled.

Inductive coupling can be used for WPT.
13

However, the energy

stored in the magnetic field decreases rapidly with distance. This

is because the energy depends on the square of the magnetic field

strength, i.e. 𝐸𝐵 = 𝐵
2
/2𝜇0. The magnetic field—which can for

example be calculated via the Biot–Savart law
14
—decreases as

15

𝐵 ∼ 𝑑
−2

with the distance 𝑑, so that 𝐸𝐵 ∼ 𝑑
−4
.

a) Mutual inductance

The two resonators shown in Fig. 10-4 are coupled due to mutual

induction. With Faraday’s induction law the corresponding coupling

constant can be found. Consider the voltage 𝑈2 induced by the

magnetic field 𝐵1 of the primary inductor in every closed secondary

wire loop with area 𝐴2,

𝑈2 = −
d

d𝑡
(𝐵1𝐴2) = −𝐴2

d𝐵1
d𝑡

=𝑀
d𝐼1
d𝑡

.(10-20)

The proportionality constant𝑀 is called the mutual inductance; it

depends solely on the geometric properties of the two inductors

and is thus symmetric,
16

i.e. 𝑈1 =𝑀 ̇𝐼2. The mutual inductance can,

in general, be calculated via the Neumann formula
17

[286; 287]

𝑀=
𝜇0
4𝜋
∫
𝜕𝐴1

∫
𝜕𝐴2

d𝐥1 ⋅ d𝐥2
∣𝐫1 − 𝐫2∣

.(10-21)
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Figure 10-5: Geo-

metry of two coupled,

circular wire loops

with radii 𝑅1 and 𝑅2,

which are separated

by the length 𝑑 in the

𝑧 direction. An addi-

tional misalignment

in the 𝑥 direction and

a rotation around the

𝑥-axis are described

by the parameters 𝛿

and 𝜗, respectively.

𝑧

𝑥

𝑦

𝐴1

𝐫1

𝐝

𝛿

𝜗 𝐴2

𝐫2

In simple cases— two identical solenoids, for example— the mutual

inductance is related to the self-inductances by𝑀
2
= 𝐿1𝐿2. How-

ever, this holds only in idealised systems with perfect magnetic

coupling and no flux leakage. In real systems a coupling constant

must be introduced,

𝑀= �̂�√𝐿1𝐿2 , (10-22)

where �̂� =𝑀/√𝐿1𝐿2 ≤ 1 is the normalised mutual inductance.

The self-inductances can be calculated in a similar manner as

the mutual inductance, which is discussed in Appendix H-3 at the
example of a single wire loop. However, a suitable expression can,

in principle, also be obtained directly from the mutual inductance

of two identical inductors at the distance 𝑑 = 0. Hence, in the case

of two circular wire loops with radii 𝑅1 = 𝑅2, which are perfectly

aligned, one can conclude that

𝐿 = 𝑀∣
𝑑=0,𝑅1=𝑅2

,

so that𝑀/𝐿 ≤ 1 as required above. Nevertheless, this calculation

is far from being trivial in practice, which is briefly discussed in

Appendix H-3.
Instead of a single wire loop, one can also consider multiple

wire loops forming a tightly wound coil with a length which is small

in comparison to its diameter. That is, the 𝑁1 wire loops of the

primary inductor create a magnetic field which induces a current
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Figure 10-6: Mutual

inductance𝑀 of two

coupled, circular wire

loops with equal radii

𝑅1 = 𝑅2 = 29cm for

different values of a)

the distance 𝑑, b) the

misalignment 𝛿, and

c) the rotation 𝜗. In

b) and c) the separa-

tion is 𝑑 = 20cm.

20 50 100

𝑑/cm

0.00

0.05

0.10

0.15

𝑀
/𝐿

a)

0 50 100

𝛿/cm

b)

0 𝜋/4 𝜋/2

𝜗

c)

18
cf. Ref. [288]

in the𝑁2 wire loops of the secondary inductor. Hence,

𝑀 ∝𝑁1𝑁2 ,

𝐿1 ∝ 𝑁
2
1 ,

𝐿2 ∝ 𝑁
2
2 .

This immediately shows that the normalised mutual inductance �̂�

is independent of the windings numbers. Further, Eqs. (10-2) and
(10-20) yield

𝑈2
𝑈1

=
𝑀

𝐿1
∝
𝑁2
𝑁1

,

which corresponds to a transformer equation, i.e. the ratio of the

voltages of two coupled inductors depends on the ratio of their

winding numbers.

The mutual inductance does not only depend on the geometric

properties of the inductors themselves, but also on their geometric

arrangement. Thus, factors like their distance,
18

their alignment,

and their relative orientation to each other have to be considered;

this is illustrated in Fig. 10-5 for two wire loops. The evaluation of

the mutual inductance via the Neumann formula (10-21) depending
on different geometrical arrangements can be found in Appendix

H; the corresponding numerical evaluations of𝑀 as a function of

the distance and the influence of different forms of misalignment

are shown in Fig. 10-6. It should be noted beforehand that the

absolute values of the normalised mutual inductances are rather

small; however, this will be of importance in the further course

of this thesis, as it ensures that the matrix model introduced in
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19
cf. Eq. (10-28)

20
The direction of the

induced current and

thus the sign follow

Lenz’s law.

21
Usually, this would

require the active tun-

ing of specific system

parameters, e.g. see

Ref. [289].

the upcoming Section 10-5 is a valid approximation.
19

Further, the

coupling becomes weaker when the separation increases. This

is intuitive because the magnetic field decreases quadratically

with distance; the polynomial dependence is readily identifiable in

Fig. 10-6a).
As opposed to this, the influence of misalignments on the induct-

ive coupling for a fixed distance is more complicated. For a parallel

displacement, which is shown in Fig. 10-6b), the absolute strength
of the inductive coupling also decreases, although the effect is

rather small at first. Further, the mutual inductance becomes even

negative at some point. In contrast to the self-inductance, which

must be positive by definition,
20

there is no such restriction on

the mutual inductance; i.e. the direction of the induced current

depends entirely on the alignment of the wire loops with respect to

the magnetic field lines.

A rotational misalignment is shown in Fig. 10-6c), where the
value 𝜗 = 𝜋/2 means that the two wire loops are perpendicular

to each other. Surprisingly, small rotations can even increase the

inductive coupling. The reason is that the magnetic field strength

changes more strongly for smaller distances than it does for larger

distances; in other words, the increase in the induced current in

the part of the wire which is rotated towards the primary inductor

is larger than the respective decrease in the part of the wire which

is rotated away. However, eventually the coupling decreases and

vanishes if the two inductors are perpendicular to each other.

These brief considerations show that the mutual inductance

strongly depends on the geometric properties of the individual

inductors as well as their geometric arrangement. To find an ideal

arrangement can be difficult, though, real applications are hard to

control anyway. Therefore, it is required to develop robust coupled

systems that can adapt to different geometric arrangements.
21

Such systems are briefly discussed in Chapter 11.

b) Coupled modes

The mutual inductance couples two resonators as shown in Fig. 10-4.
For this reason, they can also be described according to the coupled
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22
particularly for the

near-resonant case in

which 𝜔𝑘 ≈ 𝜔𝑙

mode theory [284; 290; 291] via

d𝑎1
d𝑡

= i𝜔1𝑎1 + i𝜅𝑎2 ,(10-23)

d𝑎2
d𝑡

= i𝜔2𝑎2 + i𝜅𝑎1 ,(10-24)

where 𝜔1,𝜔2 > 0 are the resonance frequencies of the two indi-

vidual resonators, respectively, and 𝜅 is a coupling constant which

is derived in the following.

Assuming that the current in each oscillator is of the form

𝐼𝑘(𝑡) =
1

2
(𝐼𝑘(0) e

i𝜔𝑘𝑡 + 𝐼
∗
𝑘 (0) e

−i𝜔𝑘𝑡) ,

then, because of Eq. (10-20), the mean power at an inductor due to

the coupling to the other inductor reads

𝑃𝑘𝑙 = ⟨𝑀
d𝐼𝑘
d𝑡
𝐼𝑙(𝑡)⟩ = ⟨𝑃

+
𝑘𝑙 +𝑃

−
𝑘𝑙⟩

with

𝑃
+
𝑘𝑙 =

i𝜔𝑘𝑀

4
(𝐼𝑘(0)𝐼𝑙(0) e

i(𝜔𝑘+𝜔𝑙)𝑡 − 𝐼
∗
𝑘 (0)𝐼

∗
𝑙 (0) e

−i(𝜔𝑘+𝜔𝑙)𝑡) ,(10-25)

𝑃
−
𝑘𝑙 =

i𝜔𝑘𝑀

4
(𝐼𝑘(0)𝐼

∗
𝑙 (0) e

i(𝜔𝑘−𝜔𝑙)𝑡 − 𝐼
∗
𝑘 (0)𝐼𝑙(0) e

−i(𝜔𝑘−𝜔𝑙)𝑡) .(10-26)

The terms in Eq. (10-25) are oscillating rapidly with the frequency

(𝜔𝑘+𝜔𝑙); hence, they can be neglected in the time average
22

when

compared to the slowly oscillating terms in Eq. (10-26) with the

frequency (𝜔𝑘 −𝜔𝑙). Thus,

𝑃𝑘𝑙 ≈
i𝜔𝑘𝑀

4
⟨𝐼𝑘𝐼

∗
𝑙 − 𝐼

∗
𝑘 𝐼𝑙⟩ =

i𝜔𝑙
2

𝑀

√𝐿𝑘𝐿𝑙
⟨𝑎𝑘𝑎

∗
𝑙 − 𝑎

∗
𝑘𝑎𝑙⟩ ,(10-27)

where 𝑎𝑘 = i𝜔𝑘𝐿𝑘𝐼𝑘√𝐶𝑘/2 are the mode amplitudes.

Now, one can assume that the mean rate of change of the energy

in a resonator due to the couplings in Eqs. (10-23) and (10-24) is
given by the difference of the mutually induced powers which are
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23
cf. Ref. [280]

24
The coupling con-

stants are symmetric,

which is an expres-

sion of the conserva-

tion of energy.

25
cf. Ref. [290]

described by Eq. (10-27), i.e.

⟨
d∣𝑎𝑙∣

2

d𝑡
⟩ = i ⟨𝜅𝑎𝑘𝑎

∗
𝑙 −𝜅

∗
𝑎
∗
𝑘𝑎𝑙⟩

!
= 𝑃𝑘𝑙 −𝑃𝑙𝑘 .

This assumption yields an explicit expression for the coupling

constant,
23

𝜅 =
𝜔𝑘 +𝜔𝑙

2
�̂� , (10-28)

where �̂� =𝑀/√𝐿𝑘𝐿𝑙 is the normalised mutual inductance intro-

duced in Eq. (10-22). Equation (10-28) is real and depends directly

on the mean frequency of the two resonators; since �̂� is dimen-

sionless, the dimension of the coupling constant is the same as for

frequencies, which is in agreement with Eqs. (10-23) and (10-24).
Note that the same line of thought holds for the mean rate of

change of the energy in the other resonator; this yields the very

same coupling constant.
24

Note that for weak couplings the coupling terms are propor-

tional only to the mode amplitude of the respective other resonator

as in Eqs. (10-23) and (10-24). This is because the time evolution

of the mode amplitude is only slightly perturbed by the coupling

if the coupling constant is weak in comparison with the reson-

ance frequencies. However, the coupling terms are, in general,

described by specific functions of the mode amplitudes. Hence,

Eqs. (10-23) and (10-24) can be considered as the first-order Taylor

approximations of the mode equations.
25

10-5 Matrix model for coupled
resonators

Coupled electric resonators can be described by the mode equations

(10-23) and (10-24), where the coupling constant 𝜅 is given by
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26
i.e. the mode equa-

tions depend only on

the mode amplitudes

Eq. (10-28). These equations can be written in the matrix form

d

d𝑡
⎛⎜
⎝

𝑎1
𝑎2

⎞⎟
⎠
= i⎛⎜
⎝

𝜔1 𝜅

𝜅 𝜔2

⎞⎟
⎠

⎛⎜
⎝

𝑎1
𝑎2

⎞⎟
⎠
,(10-29)

which is mathematically equivalent to the discrete Schrödinger

equation (2-38), where 𝑎𝑘 represent the wave function and −𝜔𝑘
correspond to the potential for 𝑘 = 1,2.

Gain and loss can also be described by mode equations as

discussed in Sections 10-2 and 10-3. However, while a loss term
can readily be included into the matrix model (10-29), the mode

equation (10-14) with gain explicitly depends on the incident wave.

Therefore, gain cannot yet be described by a matrix model in a self-

consistent manner.
26

a) Effective description of gain

It is desirable to describe the effects of a transmission line, which

introduces both gain and loss, in an effective manner. This corres-

ponds to the replacement of the gain and loss terms in the mode

equation (10-14) by an effective gain term, that is

d𝑎

d𝑡
= i𝜔𝑎 + 𝛾𝑎(10-30)

being equal to Eq. (10-12) with a negative loss factor if 𝜔 = 𝜔0 is

the resonance frequency. A comparison between Eqs. (10-14) and
(10-30) yields the condition

(i𝜔0 − 𝛾)𝑎 + √2𝛾𝑠+
!
= (i𝜔 − 𝛾)𝑎 ,

where the assumption is made that 𝑎 is a solution of both Eqs. (10-14)
and (10-30). This condition can be satisfied with a suitable choice

of the incident wave,

𝑠+ =
i(𝜔−𝜔0) + (𝛾 + 𝛾)

√2𝛾
𝑎 ,(10-31)
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27
That is, one may as-

sign them to the ener-

gies ℏ𝜔.

28
To put it the other

way around: The in-

cident waves depend

only on the quantities

in the primary reson-

ator.

where 𝑎 can be determined by solving the effective mode equation

(10-30).
The combination of Eqs. (10-12), (10-23), (10-24) and (10-30)

then yields a matrix model for coupled resonators with gain and

loss which is described by the Hamiltonian

−iℋ = ⎛⎜
⎝

i𝜔1 + 𝛾1 i𝜅

i𝜅 i𝜔2 − 𝛾2

⎞⎟
⎠
, (10-32)

where 𝜔1 and 𝛾1 correspond to the effective resonance frequency

and the effective gain factor, respectively. The Hamiltonian (10-32)
corresponds to the two-mode matrix Hamiltonian (6-5) with the

definitions 𝜖 ≡ −𝜔 ≤ 0 and 𝐽 ≡ 𝜅 > 0; all parameters are given in

dimensions of frequencies.
27

By a suitable choice of the incident

wave (10-31) the model parameter 𝜔1 can also correspond to the

actual resonance frequency of the physical electric resonator.

The matrix model (10-32) possesses the same degrees of freedom

in its parameters as its quantum counterpart. Some of these

parameters are determined by actual physical components of the

circuits:

— The resonance frequency 𝜔2 = 1/√𝐿2𝐶2 is determined by the

properties of the inductor and the capacitor in the secondary

circuit.

— The loss factor 𝛾2 = 𝑅2/2𝐿2 is determined primarily by the

resistor in the secondary circuit.

In contrast, the effective resonance frequency 𝜔1 and the effective

gain factor 𝛾1 are both determined via Eq. (10-31) by the choice of
the incident wave in the primary resonator.

28
They can, in principle,

be chosen arbitrarily; due to the gauge freedom of the energy,

though, only the difference of the model resonance frequencies

(𝜔1 −𝜔2) is physically meaningful. Further, the coupling constant

(10-28) depends on the real frequencies of the physical circuits,

which are determined by the inductances and the capacities; there-

fore, 𝜅 can be chosen independently of the quantities 𝜔1 and

𝜔2 in the matrix model. For these reasons, a system of two cou-

pled, electric resonators is a suitable platform for implementing
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29
cf. Chapter 8

30
Due to the gauge

freedom of a Hamil-

tonian, 𝜔 = 0 may be

chosen as the eigen-

value.

31
cf. Ref. [125]

the symmetric and symmetrised systems discussed in Chapter 6.
This provides the means for an experimental realisation that is

rather simple and robust in comparison with actual quantum sys-

tems.
29

Thus, due to their mathematical equivalence, the results

of Chapter 6 can, in principle, be transferred with only minor

physical restrictions; an example being that the corresponding on-

site parameters must be negative.

In the upcoming Chapter 11 the wireless transmission of power

is discussed. To allow for stable WPT, at least one stationary state

must exist. With the condition
30
detℋ = 0 the Hamiltonian (10-32)

yields

(i𝜔1 + 𝛾1)(i𝜔2 − 𝛾2) = −𝜅
2
.(10-33)

A specific set of solutions for the effective parameters 𝜔1 and 𝛾1,

both of which can easily be modified via the incident wave, are

given by

𝜔1 =
𝜅
2

𝜔2
2
+ 𝛾2

2

𝜔2 , 𝛾1 =
𝜅
2

𝜔2
2
+ 𝛾2

2

𝛾2 .(10-34)

The parameters (10-34) satisfy Eq. (6-16) with 𝜖 → −𝜔, i.e. such

systems are semi-symmetrised; of course, this also holds for other

solutions of Eq. (10-33). Further, the following relation is found for

the ratio of the resonator energies,

∣𝑎2∣
2

∣𝑎1∣
2
=

𝜅
2

𝜔2
2
− 𝛾2

2

.(10-35)

b) Non-linear in-coupling

Since the parameters in the first mode of the effective matrix model

can be chosen arbitrarily, one can also construct non-linear models

similar to the ones discussed in Chapter 7. In these cases the

relation between the incident wave 𝑠
+
1 and the mode 𝑎1 is no longer

given by Eq. (10-31), but also becomes non-linear. For example,
31

𝜔1 →𝜔1+𝑔|𝑎1|
2
yields a model with a non-linear imaginary part of

strength 𝑔. Remember, that this corresponds to a quantum system
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32
e.g. due to interac-

tions, cf. Chapter 8

33
e.g. see Ref. [125]

34
e.g. see Ref. [292]

35
For this purpose, a

potentiometer can be

used, for example.

with a non-linear real potential, which is consistent with the non-

linear quantum systems considered in Chapter 7.
This can easily be generalised to arbitrary complex functions

𝑓(𝑎1) of the in-coupling mode amplitude, i.e.

𝑓(𝑎1) = 𝜔1 +𝑔∣𝑎1∣
2
− i𝛾1

(10-36)

corresponds to the example discussed above. The Hamiltonian of

the corresponding matrix model reads

−iℋ = ⎛⎜
⎝

i𝑓(𝑎1) i𝜅

i𝜅 i𝜔2 − 𝛾2

⎞⎟
⎠
, (10-37)

which can be obtained with the incident wave

𝑠+ =
i(Re𝑓(𝑎1) −𝜔1) + (Im𝑓(𝑎1) + 𝛾1)

√2𝛾1
𝑎1 , (10-38)

where 𝜔1 and 𝛾1 are the parameters of the physical in-coupling

oscillator. In contrast to the quantum system (7-30), which exhibits

non-linear effects in both modes,
32

only the resonators with gain

can become non-linear.

The advantage of a non-linear in-coupling of energy lies in the

fact that it acts as an implicit control technique for the circuit.

That is, the non-linear gain term in Eq. (10-37) can stabilise the

system with respect to perturbations of its parameters
33

in a similar

fashion as the non-linear terms for the quantum systems discussed

in Chapter 7 do. Moreover, this allows for emulating different

systems without the need to change the physical components of the

resonant circuits. Usually, to change the resonance frequency of a

circuit, for example, a variable capacitor
34

is required; analogously,

changes to the loss factor require a variable resistor.
35

With a

transmission line both quantities can effectively be changed in the

model as described in Section 10-5 a).
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1
Here, the term “sta-

tionary” means that

the total amount of

energy that is stored

in a resonator is con-

served; it still oscil-

lates between the in-

ductor and the capac-

itor, of course.

𝑠
+
1

𝑠
−
1

𝑎1

𝑠
−
2

𝑎2

Figure 11-1: Wire-

less power transmis-

sion

2
cf. Eqs. (10-12) and

(10-30)

Wireless power transfer 11
The matrix model introduced in Chapter 10 for the description

of coupled electric resonators is mathematically equivalent to

the matrix models in QM which were considered in the first part

of this thesis. Thus, all the results of Chapters 6 and 7 remain

valid. However, coupled resonant circuits also allow for technical

applications like wireless power transfer (WPT). While it is, in

principle, sufficient to tune the system parameters in such a way

that stable stationary
1
states occur, additional factors like the

efficiency of the WPT must necessarily be considered to assess its

utility.

11-1 Wireless power transfer with
coupled resonators

As discussed in Section 10-4, two inductively coupled resonators

can be used to implement WPT— e.g. see Refs. [125; 277–279;

287; 288; 291; 293–296] and references therein—where energy is

inserted into the primary circuit and extracted at the secondary

circuit.

The properties of such a system can best be described by in-

troducing another transmission line for the extraction of energy

from the circuit. The corresponding coupled resonant circuits are

shown in Fig. 11-1, where 𝑠±𝑘 describe the incident and leaking

waves in each resonator, respectively; here, 𝑠
+
2 = 0 because energy

should only be inserted into the primary circuit. The corresponding

coupled mode equations read
2

d𝑎1
d𝑡

= (i𝜔1 − 𝛾1)𝑎1 + i𝜅𝑎2 +√2𝛾1𝑠
+
1 , (11-1)

d𝑎2
d𝑡

= (i𝜔2 − 𝛾2)𝑎2 + i𝜅𝑎1 , (11-2)
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3
cf. Eq. (11-3)

where 𝜔1 and 𝛾1 are the real resonance frequency and the loss

factor of the in-coupling resonant circuit. Further, the parameters

𝛾1 and 𝛾2 describe the losses due to the leaking waves 𝑠
−
1 and 𝑠

−
2

in each resonator, respectively.

For further evaluations it is necessary to find explicit expressions

for the leaking waves in terms of the system parameters and the

incident wave. For this, consider that Eqs. (11-1) and (11-2) are
uncoupled for 𝜅 = 0. From Section 10-3 it is known already that in

this case |𝑠
−
2 |
2
= 2𝛾2|𝑎2|

2
, i.e.

𝑠
−
2 ≡ √2𝛾2𝑎2(11-3)

by choosing the positive sign. Similarly, 𝑠
−
1 can depend only on 𝑠

+
1

and 𝑎1. For a linear system a suitable ansatz is given by

𝑠
−
1 = 𝑐𝑠𝑠

+
1 + 𝑐𝑎𝑎1

with the complex coefficients 𝑐𝑠 and 𝑐𝑎. The relation between

the leaking wave and the mode amplitude is known already,
3

i.e. 𝑐𝑎 ≡ √2𝛾1; here, the phase relation is chosen to be unity,

which corresponds to the choice of a specific reference plane at

which 𝑠
−
1 is evaluated [284]. Further, due to energy conservation,

the following relation must always hold in the first resonator,

∣𝑠
+
1 ∣
2
− ∣𝑠

−
1 ∣
2
=
d

d𝑡
∣𝑎1∣

2
+ 2𝛾0∣𝑎1∣

2
.(11-4)

Here, |𝑠
+
1 |
2
> |𝑠

−
1 |
2
correspond to the in-coming and out-going

powers, so that the left-hand side of Eq. (11-4) corresponds to the
net power flowing into the resonator. The first term on the right-

hand side of Eq. (11-4) describes the built-up rate of the resonator

energy, while the second term corresponds to the rate of energy

dissipation due to internal losses. In the following, the latter term

is neglected under the assumption of an ideal resonator without

any internal resistance. A comparison between the left-hand side

of Eq. (11-4) and the time-derivative of 𝑎1 evaluated with Eq. (11-1)
yields the two conditions |𝑐𝑠|

2
= 1 and 𝑐𝑠 = 𝑐

∗
𝑠 = −1. Hence,

𝑠
−
1 = −𝑠

+
1 +√2𝛾1𝑎1(11-5)
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4
e.g. see Ref. [125]

is the desired expression for the leaking wave in the primary

resonator.

Only in the uncoupled case Eqs. (11-3) and (11-5) hold exactly.

However, it can still be assumed that they remain approximately

valid for weak couplings with small values of 𝜅, if the dynamics of

the mode amplitudes described by Eqs. (11-1) and (11-2) is only
slightly perturbed.

a) Stationary solutions

Stationary solutions of the coupled resonators can be used to

implement WPT in a stable manner; that is, some portion of the

energy inserted via the incident wave 𝑠
+
1 can be extracted via the

leaking wave 𝑠
−
2 . The stationary solutions of Eqs. (11-1) and (11-2)

are given by

𝑎1 = −(i𝜔2 − 𝛾2)√2𝛾1𝛼𝑠
+
1 , (11-6)

𝑎2 = i𝜅√2𝛾1𝛼𝑠
+
1 , (11-7)

where

𝛼 =
1

(i𝜔1 − 𝛾1)(i𝜔2 − 𝛾2) + 𝜅
2
. (11-8)

The stationary solutions (11-6) and (11-7) both depend on the

incident wave 𝑠
+
1 and so does the leaking wave (11-5) in the primary

resonator.

b) Transfer efficiency

The efficiency of the WPT is defined as the ratio between the power

which is inserted into the primary resonator and the power which

is extracted from the secondary resonator,
4

𝜂 =
∣𝑠
−
2 ∣
2

∣𝑠+
1
∣
2
= 2𝛾2

∣𝑎2∣
2

∣𝑠+
1
∣
2
. (11-9)
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5
cf. Section 10-3 a)

The amount of power which is reflected and leaves the system via

the leaking wave 𝑠
−
1 is not taken into account because this energy

is neither transferred nor lost.
5

The efficiency and the reflection coefficient (10-18) are related;
the absolute square |𝛤|

2
of the reflection coefficient describes the

portion of the power which is reflected by the primary circuit. The

efficiency is thus given by 𝜂 = 1− |𝛤|
2
, which describes the portion

of the power transferred to the secondary circuit. However, while

the reflection coefficient 𝛤 depends only on the primary resonator

and thus also exists in the uncoupled case, Eq. (11-9) is a sole

consequence of the coupling. For example, the WPT efficiency

which corresponds to the stationary solutions (11-6) and (11-7) is
given by

𝜂 = 4𝛾1𝛾2𝜅
2
|𝛼|
2

with the constant 𝛼 defined in Eq. (11-8). The corresponding

reflection coefficient can be written as

𝛤 = −𝛼[(i𝜔1 + 𝛾1)(i𝜔2 − 𝛾2) + 𝜅
2
] .

In general, the efficiency (11-9) can also be written independ-

ently of the incident wave. That is, for the effective matrix model

discussed in Section 10-5 the incident wave can be expressed

in terms of the mode amplitude 𝑎1 of the primary resonator via

Eq. (10-31). Hence,

𝜂 =
4𝛾1𝛾2

(𝜔1 −𝜔1)
2
+ (𝛾1 − 𝛾1)

2

∣𝑎2∣
2

∣𝑎1∣
2
,(11-10)

which holds for any system of the form (10-32) with the effective

resonance frequency 𝜔1 and the effective gain factor 𝛾1. The ratio

of the resonator energies corresponds to Eq. (10-35), i.e.

𝜂 =
4𝛾1𝛾2𝜅

2

[(𝜔1 −𝜔1)
2
+ (𝛾1 + 𝛾1)

2
] (𝜔2

2
− 𝛾2

2
)
,
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which is in agreement with Eqs. (11-6) and (11-7). These expres-
sions can be generalised to non-linear models of the form (10-37)
with an arbitrary complex function 𝑓(𝑎1) by setting 𝜔1 = Re𝑓(𝑎1)

and 𝛾1 = Im𝑓(𝑎1).

11-2 Robust power transfer with 𝒫𝒯
symmetry

Consider the matrix model (10-32) with 𝜔1 = 𝜔2 = 𝜔0. The corres-
ponding eigenvalue equation reads

⎛⎜
⎝

i(𝜔0 − 𝜈) + 𝛾1 i𝜅

i𝜅 i(𝜔0 − 𝜈) − 𝛾2

⎞⎟
⎠

⎛⎜
⎝

𝑎1
𝑎2

⎞⎟
⎠
= 0 , (11-11)

where 𝜈 denotes the eigenfrequencies. The stationary solutions

are given by

𝜔0 − 𝜈 =
𝛾1 − 𝛾2
2

⎛⎜⎜
⎝

i ±

√
√
√

⎷

4(𝜅2 − 𝛾1𝛾2)

(𝛾1 − 𝛾2)
2

− 1
⎞⎟⎟
⎠

(11-12)

and the corresponding mode amplitudes must satisfy

−i𝜅𝑎1 = (i(𝜔0 − 𝜈) − 𝛾2)𝑎2 . (11-13)

For 𝛾1 ≈ 𝛾2 the model becomes 𝒫𝒯-symmetric and Eqs. (11-12)
and (11-13) yield

∣𝑎1∣
2

∣𝑎2∣
2
≈
1

𝜅2
∣
𝛾1 + 𝛾2
2

∓ i√𝜅2 − 𝛾1𝛾2∣

2

,

which is approximately unity for 𝜅
2
> 𝛾1𝛾2; as discussed in Section

6-1 a), this corresponds to the region in which the system is exactly

𝒫𝒯-symmetric. Further, if 𝜔1 ≈ 𝜔1 and 𝛾1 ≈ 𝛾1, then the WPT

efficiency (11-10) reads

𝜂 ≈
∣𝑎2∣

2

∣𝑎1∣
2
≈ 1 , (11-14)
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Figure 11-2: Real

and imaginary parts

of the eigenfrequen-

cies of two 𝒫𝒯-sym-

metric, coupled res-

onators with the pa-

rameters (11-17) and
(11-18) and the val-

ues given in Table

11-1. The solid and

dotted lines indicate

stable and unstable

states, respectively.
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6
cf. Section 10-3 a)

7
cf. Section 10-5 b)

8
cf. Eq. (11-11)

9
Note that the capa-

cities are chosen ac-

cordingly.

10
cf. Section 10-2

i.e. a 𝒫𝒯-symmetric system of coupled resonators exhibits perfect

WPT.
6
However, this requires the physical parameters 𝜔1 and 𝛾1 of

the resonator to be in the same order of magnitude as the effective

parameters 𝜔1 and 𝛾1 of the model. This occurs also for circuits

with a non-linear gain saturation element [125], which corresponds

to
7

𝑓(𝑎1) = 𝜔1 − i(𝛾1 + �̃�∣𝑎1∣
2
) .(11-15)

Figure 11-2 shows the complex eigenfrequencies of the gener-

alised model (10-37) with the non-linear function (10-36) for two
resonant circuits coupled via two wire loops that are separated

by the distance 𝑑 as shown in Fig. 10-5. This corresponds to a

Schrödinger eigenvalue equation of the form
8

ℋ𝐚 = −𝜈𝐚 .(11-16)

The parameters of some typical electric components— e.g. see

Ref. [125]—are summarised in Table 11-1, where𝑁 is the number

of current loops with radius 𝑅w. Further,
9

𝜔1 = 𝜔1 = 𝜔2 = 𝜔0 ,(11-17)

𝛾1 = 𝛾1 = −𝛾2 = 𝛾0 ,
(11-18)

where 𝛾0 ≈ 95kHz, which is defined by
10

𝛾0 =
𝑅

2𝐿
.(11-19)
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Figure 11-3: The en-

ergy in the individual

resonators is given by

the absolute square

of the eigenstates

which correspond to

Fig. 11-2. The phys-

ical states are illus-

trated with solid lines,

unphysical ones with

dashed lines.
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Table 11-1: Parame-

ters for the electric

components

Param. Value

𝜔0 2.5MHz

𝑅 400kΩ

𝐿 2.095H

𝑁 1000

𝑅w 29cm

11
Reminder: The ab-

solute square of the

mode amplitude cor-

responds to the ener-

gy stored in the res-

onator.

The coupling constant 𝜅 is determined by Eqs. (10-28) and (H-6)
and decreases as a function of the distance between the two wire

loops as shown in Fig. 10-6a).
The reason for using the non-linear function (10-36) rather than

Eq. (11-15) as in Ref. [125] is that it acts as a perturbation of

the effective resonance frequency, which corresponds to the real

potential in analogy with the non-linear function (7-2) in Chapter 7.
For the linear case, i.e. 𝑔 = 0, the eigenvalues of the coupled

electric resonators show a 𝒫𝒯-symmetry breaking as it has already

been observed in the 𝒫𝒯-symmetric two-mode quantum system

shown in Fig. 6-2. This is induced by the decrease of the coupling

constant 𝜅 because the 𝒫𝒯 symmetry is spontaneously broken at

the EP with 𝛾0/𝜅 = 1. For 𝑔 ≠ 0, however, the 𝒫𝒯 symmetry is

always broken. While the solutions of the non-linear model are

quite similar to the solutions of the linear case, as long as the

perturbation is small, deviations are apparent for larger values

of 𝑔. Since the non-linear term occurs only in the primary reson-

ator, the Hamiltonian cannot be 𝒫𝒯-symmetric for non-zero mode

amplitudes without changing 𝜔2.

The corresponding resonator energies
11

are shown in Fig. 11-3.
The changes due to the non-linear perturbation with strength 𝑔

are rather subtle, which indicates that the non-linear systems show

a similar behaviour as the linear 𝒫𝒯-symmetric system. However,

it is immediately clear that for larger distances only one of the

two solutions is of physical relevance. As energy is inserted only

in the primary resonator, the energy of the secondary resonator
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Figure 11-4: WPT ef-

ficiency for the solu-

tions in Figs. 11-2 and
11-3. Physical solu-

tions (𝜂 ≤ 1) are illus-

trated with solid lines,

unphysical solutions

(𝜂 > 1) with dashed

lines.
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12
cf. Section 6-1 a)

13
cf. Eq. (11-14)

should decrease for weaker couplings; thus, the energy in the

primary resonator builds up. The other solution shows the opposite

behaviour, so that the energy in the secondary resonator builds up,

while the energy in the primary resonator decreases.

The properties described above are common for 𝒫𝒯-symmetric

quantum systems;
12

that is, there exist solutions in which the

eigenfunction increases at the primary site and decreases at the

secondary site and vice versa. In a system of coupled resonators,

though, this leads to unphysical behaviour. This can be seen by

calculating the WPT efficiency (11-10) as shown in Fig. 11-4. The
efficiency of the physical states with |𝑎1|

2
> |𝑎2|

2
is always smaller

than unity. Instead, the unphysical states with |𝑎1|
2
< |𝑎2|

2
would

allow to extract more energy than the amount that is inserted, thus

breaking energy conservation.

Nevertheless, it is remarkable that the physical, 𝒫𝒯-symmetric

solutions allow for a perfect WPT with maximum efficiency.
13

This

holds also for non-linear systems, for which the WPT is almost as

efficient if the parameter 𝑔 is small enough. Though, for 𝑔 ≠ 0

the solutions are unstable at smaller distances. This can be seen

in Fig. 11-2, where the stable regions are indicated by solid lines,

while dotted lines represent the unstable solutions. Thus, 𝒫𝒯

symmetry can provide efficient WPT; though, such systems are just

marginally stable, since any small non-symmetric perturbation of

the system parameters may break the 𝒫𝒯 symmetry. Hence, it

is of interest whether the self-stabilising behaviour discussed in

Section 7-4 b) also occurs for a non-linearity which acts only in the

primary resonator.
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Figure 11-5: The

imaginary parts of

the eigenfrequencies

of two asymmetric,

coupled resonators

with the parameters

(11-20) and (11-21)
and the values given

in Table 11-2. The

solid and dotted lines

and the dots indicate

the stable, unstable,

and stationary states,

respectively.20 40 60 80 100 120
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z
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14
However, this does

not mean that there

are none.

Table 11-2: Parame-

ters for the electric

components

Param. Value

𝜔0 2.5MHz

𝑅 400kΩ

𝐿 20.95mH

𝑁 100

𝑅w 29cm

11-3 Non-linear power transfer in
asymmetric systems

Similar to the discussions in Section 7-4 b), an asymmetric system

of two coupled resonators is investigated. The parameters of the

Hamiltonian (10-37) are chosen according to

𝜔1 = 𝜔0 , 𝜔1 = 0.0115𝜔0 , 𝜔2 = 0.0085𝜔0 , (11-20)

𝛾1 = 𝛾0 , 𝛾1 = 0.008𝛾0 , 𝛾2 = −0.012𝛾0 , (11-21)

where 𝛾0 ≈ 9.5MHz is given again by Eq. (11-19). The parameters

of the electrical components are summarised in Table 11-2. Note
that, in contrast to Section 11-2, the physical parameters 𝜔1 and 𝛾1
and the model parameters 𝜔1, 𝜔2, 𝛾1, and 𝛾2 in Eqs. (11-20) and
(11-21) are not in the same order of magnitude. This is because no

such systems with stable stationary solutions were found
14

apart

from the 𝒫𝒯-symmetric systems discussed in Section 11-2.
Figure 11-5 shows the imaginary parts of the eigenfrequencies

of the asymmetric model. Although they look quite similar to

the solutions of the 𝒫𝒯-symmetric models shown in Fig. 11-2,
the imaginary parts are shifted, so that real eigenfrequencies

and thus stationary states occur only for larger distances. In

contrast to Section 11-2, the non-linearity strength 𝑔 is chosen to

be negative, which in this case yields stable regions in the vicinity
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Figure 11-6: WPT ef-

ficiency for the solu-

tions in Fig. 11-5.
The stationary solu-

tions are illustrated

by dots; they appear

just below the dashed

line which indicates

a measure for the op-

timal efficiency of the

model, i.e. 𝜂 = 1 if

𝜔1, 𝛾1 and 𝜔1, 𝛾1 are

in the same order of

magnitude. 20 40 60 80 100 120

𝑑/cm
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15
cf. Chapter 8

16
A closer inspection

reveals that the sta-

ble region around the

stationary solutions

shrinks towards some

point near Im𝜈 = 0 in

Fig. 11-5.

17
e.g. by increasing

the model parame-

ters in Eqs. (11-20)
and (11-21) by two or-
ders of magnitude

of the stationary solutions; though, this is only a minor technical

detail here, as the parameter 𝑔 has no physical significance unlike

in a quantum system,
15

for example. Unfortunately, these stable

regions vanish quickly
16

even for small values of 𝑔. Nevertheless,

the stationary solutions show the same qualitative behaviour as in

Fig. 7-6. This is because the mode amplitude decays for Im𝜈 > 0

and grows for Im𝜈 < 0 due to Eq. (11-16), which has the same

effect as decreasing or increasing the parameter 𝑔 in the model.

This again acts as a self-stabilising mechanism— similar as in

non-linear quantum systems—with respect to small changes in

the separation distance 𝑑. The stationary solutions also become

unstable if the non-linear terms become too strong. However, the

system discussed here seems to be more sensible, so that this

occurs already for rather small values of 𝑔.

The WPT efficiency can again be calculated via Eq. (11-10),
though, this is only relevant exactly at the stationary points. Never-

theless, Fig. 11-6 shows the WPT efficiency for all states in Fig. 11-5.
The stationary points are marked, which reveals that the WPT is

rather inefficient in comparison with the 𝒫𝒯-symmetric solutions

in Section 11-2. This is because the efficiency depends on both the

system and the model parameters, which in this case are not in the

same order of magnitude. If they were,
17

however, the solutions at

𝜂 ∼ 0.03 would be almost optimal.
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𝑎1

𝑎2

⋮

𝑎𝑛

Figure 11-7: Chain of
resonant circuits

Table 11-3: Parame-

ters for the electric

components

Param. Value

𝜔0 2.5MHz

𝑅 40Ω

𝐿 20.952mH

𝑁 100

𝑅w 29cm

𝜌w 1mm

𝜌 0.0168µΩm

11-4 Resonator chains

Last but not least, the considerations about WPT in Section 11-1 for
two coupled resonators with gain and loss, as shown in Fig. 11-1,
can be generalised to resonator chains, at least as long as gain and

loss occur only in the outer-most circuits, that is. An example of a

chain with 𝑛 resonators is shown in Fig. 11-7.
In Section 6-3 the concept of transport chains was introduced as

a special linear type of multi-mode systems with stationary states.

For transport chains in QM the parameters are chosen according

to Eqs. (6-31) to (6-34). However, Eqs. (6-31) and (6-32) would
require the resonance frequencies 𝜔𝑘 of the resonators to be zero.

While this is possible for the effective resonance frequency 𝜔1 in

the primary resonator, it certainly is not for the physical resonance

frequencies determined by 𝜔𝑘 = 1/√𝐿𝑘𝐶𝑘. Instead, all resonance

frequencies are chosen to be non-zero but equal, i.e.

𝜔𝑘 = 𝜔0 = 𝜔1 (11-22)

for 𝑘 = 1,… ,𝑛. Further, the gain and loss parameters in the outer

resonators are chosen as

𝛾1 = 𝛾0√cot (
𝜋

4
−𝜑) = 𝛾1 ,

(11-23)

𝛾𝑛 = −𝛾0√tan(
𝜋

4
−𝜑) , (11-24)

which are parametrised by the angle 𝜑. In contrast to Eqs. (6-33)
and (6-34), the coupling constant is replaced by 𝛾0 ≈ 955Hz defined
in Eq. (11-19), which corresponds to a different choice of the scale of
gain and loss. The coupling constant 𝜅 ≈ 276kHz is fixed because

of a constant separation distance between adjacent resonators. The

remaining parameters of the electrical components are summarised

in Table 11-3.
Figure 11-8 shows the real and imaginary parts of the eigen-

frequencies of a chain of five resonators. It is immediately clear

that the parameters (11-22) to (11-24) are no longer the specific
solutions for symmetrised systems as in Section 6-3 because the
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Figure 11-8: Real

and imaginary parts

of the eigenfrequen-

cies of a chain of

five coupled resonat-

ors, each separated

by 𝑑 = 20cm. The pa-

rameters (11-22) to

(11-24) are determ-

ined by Table 11-3.
As before, the solid

and dotted lines in-

dicate stable and un-

stable states, respec-

tively.
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Figure 11-9: WPT ef-

ficiency for the sta-

ble and unstable solu-

tions of the resonator

chain in Fig. 11-8. All
states share roughly

the same WPT effi-

ciency which is, how-

ever, only physically

meaningful for the

stationary solutions

at 𝜑 = 0.
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18
cf. Eqs. (11-22) and

(11-23)

eigenfrequencies are neither real nor do they form complex-conjug-

ate pairs. This is, in particular, due to the physical constraint that

the resonance frequencies (11-22) must be non-zero. Nevertheless,

the imaginary parts of the eigenfrequencies are still rather small in

comparison with the real parts. Moreover, while the real parts of

the eigenfrequencies do not noticeably change with respect to their

orders of magnitude, the imaginary parts vanish only for 𝜑 = 0

where the parameters (11-23) and (11-24) become 𝒫𝒯-symmetric,

i.e. 𝛾1 = −𝛾𝑛. The farer away the system is from this parameter, the

stronger the solutions deviate from a stationary ones. As discussed

in Section 11-2, the efficiency of the power transfer of the 𝒫𝒯-

symmetric systems becomes optimal since the physical and the

model parameters are in the same order of magnitude again.
18

This

can be observed in Fig. 11-9, where all states are, in fact, described
roughly by the same WPT efficiency curve.
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Figure 11-10: Eigen-
frequencies of the

resonator chain in

Fig. 11-8, but with an

additional, intrinsic

loss. Note that the in-

set which shows the

zeros of the imagi-

nary part uses exactly

the same domain as

the corresponding in-

set in Fig. 11-8.
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For any real circuit, though, there occurs an intrinsic loss, as

discussed in Section 10-2, that has been ignored so far. As an

example the resistance of the wire loop is taken into account, which

can be calculated via Eq. (10-11). For this reason Table 11-3 also
introduces the resistivity 𝜌 of copper taken from Ref. [297]. Hence,

in addition to the gain and loss terms in the outer resonators due to

Eqs. (11-23) and (11-24), an intrinsic loss term with 𝛾w ≈ 232kHz

defined by Eqs. (10-11) and (11-19) is introduced; for the sake

of argument, it is assumed that this loss factor is equal in all

resonators, ignoring the fact that the inner resonators contain

two identical wire loops. The real parts of the eigenfrequencies

of the coupled resonators are unchanged as shown in Fig. 11-10.
However, the imaginary parts are shifted upwards, so that stable

stationary solutions exist for 𝜑 ≠ 0. Due to the intrinsic loss in

all resonators, none of these solutions can correspond to a 𝒫𝒯-

symmetric Hamiltonian, i.e. they are genuine stationary solutions

of an asymmetric potential and correspond to the symmetrised

quantum transport chains in Section 6-3.
The efficiency shown in Fig. 11-9 is almost unchanged by the

introduction of a small intrinsic loss and can thus be used as a

good approximation. Since the stationary solutions of the resonator

chain are shifted towards larger values of 𝜑, the corresponding

efficiency becomes smaller; this is intuitive, as the WPT efficiency

of a stable state cannot exceed unity. Conversely, physical solutions
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Figure 11-11: The en-
ergies of the resonat-

ors are approximately

equal for Figs. 11-8
and 11-10. Note that
𝜈1 is non-zero in the

third resonator and

𝜈2, 𝜈3 are non-zero in

the second and fourth

resonators; thus, the

energy distribution is

non-trivial as in Sec-

tion 6-3.
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19
Here, (|𝑎𝑘|

2
)𝑙means

the absolute square

of the 𝑙-th compon-

ent of the 𝑘-th eigen-

vector.

can only exist for 𝜑 ≤ 0 under the assumption that changes to the

system preserve the WPT efficiency approximately.

To conclude this discussion, the distribution of the energy in the

resonator chain is shown in Fig. 11-11 for the different solutions
in Figs. 11-8 and 11-10, i.e. the intrinsic loss has only a minor

effect on the absolute square of the mode amplitudes. Further, the

energies are approximately constant with respect to the parameter

𝜑 and—similar to the quantum transport chains in Section 6-3—
all of them are non-trivial, meaning that energy is stored at least in

one of the inner resonators. Therefore, the resonator chain does

not effectively form a two-resonator system as the one shown in

Fig. 11-1. However, the state with Re𝜈1 = 𝜔0 effectively forms a

three-mode system because
19
(|𝑎1|

2
)2 = (|𝑎1|

2
)4 = 0; analogously,

(|𝑎2|
2
)3 = (|𝑎3|

2
)3 = 0, i.e. these states effectively form a four-mode

system.
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1
cf. Section 4-6

2
cf. Chapter 4

3
cf. Section 5-3 b)

4
cf. Section 5-2

5
cf. Section 4-4

6
cf. Section 5-3 a)

7
cf. Chapter 8

Conclusions and Outlook 12
There is nothing more to be said or to be done

tonight.

Sherlock Holmes

—The Five Orange Pips

In this thesis effectively open systems with gain and loss were

discussed both within QM and ED. In theory, gain and loss can be

introduced via complex potentials which render the Hamiltonian

non-Hermitian. The effective description of open systems is of

practical importance, as it allows for an elegant and efficient

description of otherwise tremendously complicated systems.
1

For NHQM
2
the rather general concept of symmetrisation was

introduced in Chapter 5 as a tool for obtaining physical systems

and states for not necessarily physical types of non-Hermitian

Hamiltonians. Physical spectra of non-Hermitian Hamiltonians

consist of real or complex-conjugate eigenvalues. Such systems

are required to satisfy the symmetrisation conditions (5-14) and
(5-15) with the symmetrisation operators which can be derived

directly
3
or within the framework of SUSY QM.

4
In simple cases

the symmetrisation operators also define a metric.
5

In contrast to actual symmetries
6
like 𝒫𝒯 symmetry, symme-

trised systems allow for completely asymmetric potentials with

no apparent symmetries or structure. This generalisation proves

to be useful for obtaining physically meaningful, non-Hermitian

quantum systems which are, for example, asymmetric by nature

or become asymmetric because an imposed symmetry is hard to

maintain.
7
Further, in contrast to similar theories, symmetrisation

as a tool allows for applications to systems with incomplete spec-

tral properties, i.e. only a specific part of the spectrum is real or

complex-conjugate. This occurs, for example, if only a subspace of

the Hilbert space is physically meaningful, while the remaining
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8
cf. Section 6-2

9
cf. Section 6-2

10
There no longer ex-

ist real solutions for

the parameters for

which the symmetri-

sation conditions are

satisfied, cf. Section

6-1 d).

11
e.g. see Ref. [298]

for an overview

states can be considered to be consequences of the system being

described effectively. Such scenarios require for the concept of

semi-symmetrisation, which involves semi-inverse symmetrisation

operators, and is particularly useful in cases where only a number

of specific states is required in an application; an example is given

by WPT considered in the second part of the thesis. However, there

are also systems which are inherently just semi-symmetrisable.

The two-mode system discussed in Section 6-1 possesses—apart

from the 𝒫𝒯-symmetric case—only one stationary state. This is a

consequence of the limited number of parameters and this prop-

erty does not occur for higher-dimensional systems with at least

three modes.
8
This also holds, in principle, for spatially extended

systems as discussed in Section 6-4 and Ref. [180]. However, the

construction of symmetrised systems can be rather difficult or even

impossible with analytical means, which was discussed in Sections

6-2, 6-4 and 7-3.
The parameters of symmetric and symmetrised systems must

also satisfy specific relations due to the symmetrisation conditions,

e.g. see Eq. (6-16), which, in the latter case, correspond to unobvi-

ous symmetries.
9
There are limits, though: While symmetrisation

occurs within extended regions in the parameter space, there also

exist regions for which a system is not symmetrisable; this can best

be seen in Figs. 6-3, 6-4 and 6-7. Although their existence is clear

from a mathematical perspective,
10

there seems to be no distinctly

physical cause. The reason due to which a human being is unable

to recognise patterns and structures in symmetrised systems can

be ascribed to the fact that they are unintuitive. That is, similar

as for QM itself, our everyday lives do not prepare us for these

tasks and we thus have to rely on rather abstract mathematics

for their identification and description. In recent years, however,

computational techniques were developed to circumvent these

issues.

Nowadays, machine learning
11

and similar technologies can be

used to recognise and reproduce structures in vast amounts of data;

this makes them particularly useful for image and video processing.

However, such algorithms can also be used to extract physical

laws [299; 300]. Machine learning proves to be increasingly useful
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for tackling hard problems, like protein folding [301], which are

difficult to treat numerically with usual means. Another example

of such a type of problem are many-body quantum systems [302–

304]. The explicit treatment of even just medium-sized many-body

systems is quite difficult due to the vast number of degrees of

freedom involved. For larger systems one must rely entirely on

approximations like the Bogoliubov back-reaction [193; 305–307].

In the context of this thesis machine learning concepts could also

prove to be useful in recognising the unobvious symmetries and

patterns of symmetrised systems. Hence, physical systems could be

identified and reproduced in arbitrary environments by a suitably

trained neural network. This could pave the way for future technical

applications.

Another but rather academic application for symmetrisation

might be in open many-body quantum systems themselves, where

gain and loss usually are introduced via Lindblad superoperators

[308]. Such a system can be described by a quantum master equa-

tion [309; 310]. It has already been shown that the characteristic

and dynamical properties of such systems correspond to the 𝒫𝒯-

symmetric models in the mean-field approximation [309]. How-

ever, the concept of 𝒫𝒯 symmetry is not applicable to many-body

quantum systems directly. This is because for small numbers of

particles a natural imbalance between gain and loss terms occurs

due to differences in the creation and annihilation operators acting

on Fock states [309],

𝑎
†
𝑘 ∣… , 𝑛𝑘,…⟩ = √𝑛𝑘 + 1 ∣… ,𝑛𝑘 + 1,…⟩ ,

𝑎𝑘 ∣… , 𝑛𝑘,…⟩ = √𝑛𝑘 ∣… , 𝑛𝑘 − 1,…⟩ ,

which describe the microscopic mechanisms for gain and loss. To

compensate for this, the gain-loss terms must be chosen asymmet-

rically, so that the model formally is not 𝒫𝒯-symmetric. Hence,

it might be worthwhile to investigate whether or not many-body

systems can instead be symmetrised in a similar manner as their

counterparts in the mean field discussed in Chapters 6 and 7.
The description of a many-body system is also relevant, in

particular, for experiments with BECs as described in Chapter 8,
which involve non-linear interaction terms of the form discussed in

209



12
cf. Section 7-4 b)

13
e.g. see Refs. [193;

264]

14
cf. Section 10-5

15
e.g. see Ref. [313]

16
cf. Section 11-2

Chapter 7. It can be expected that the self-stabilising mechanism,

which occurs in the mean-field limit,
12

also occurs in many-body

systems. However, it is unclear how robust this phenomenon really

is, in particular, for a smaller number of condensate particles,

where unique many-body properties start playing a role.
13

Recently,

a simplified theory for the theoretical description of BECs and

their simulation via many-body calculations was published [311],

which can provide accurate results even in strongly interacting

regimes; this could provide the means to transfer the concept of

symmetrisation to the realm of many-body physics.

Nevertheless, the realisation of such systems within QM is

still demanding as discussed in Chapter 8. Yet, the concepts of
symmetries and symmetrisation can be transferred from QM to

various different wave-mechanical systems. The second part of this

thesis dealt with the explicit example of a system of inductively

coupled resonant circuits. With coupled mode theory a matrix

model can be derived which is mathematically equivalent to the

discrete, linear Schrödinger equation.
14

Hence, by mapping the

parameters of the quantum models to the electrodynamic models,

all results described in Chapters 5 and 6 can be transferred with

only minor restrictions due to the electrical components of the

circuits.

A practical and important technical application of such systems

is WPT, which is discussed in Chapter 11. Usually, efficient and

robust WPT requires the active tuning of the system parameters

[289; 312], which can be used, for example, to adapt the circuit for

different separation distances and other forms of misalignments.

This may be convenient for some applications of WPT where the

separation distance is not necessarily fixed; however, active tuning

is necessary for applications like the wireless powering of vehicles,
15

where the distance between the coupled systems varies dynamically.

The power transfer in an exactly 𝒫𝒯-symmetric WPT system can

be optimal independently of the separation distance.
16

In principle,

this does not necessarily require active tuning of the electric

components. However, it still requires prior knowledge about the

secondary circuit and the specific load, which must be matched

perfectly by the primary circuit via the incident wave; otherwise,
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17
i.e. 𝒫𝒯

18
cf. Section 6-1

19
cf. Section 5-3 b)

20
cf. Ref. [314]

the 𝒫𝒯 symmetry is broken immediately. In contrast, asymmetric

systems in combination with non-linear effects can provide a self-

stabilising mechanism which is discussed in Section 11-3 and works
similarly to the corresponding effect for quantum systems discussed

in Chapter 7. Yet, this also requires some prior knowledge or an

initial exchange of information for choosing a suitable incident wave.

Moreover, the examples discussed in Section 11-3 are not quite
efficient. This is because a system of coupled resonators with non-

linear in-coupling seems to become unstable rather easily. Thus,

Chapter 11 serves as a proof of concept rather than a thoroughful

evaluation. To determine whether or not the concepts from NHQM

are useful and pioneering in the field of WPT requires for further

studies. Nevertheless, such systems are a suitable and accessible

platform for the application of symmetries and symmetrisation

introduced in this thesis.

The application of WPT in Chapter 11 reveals and illustrates

the fundamental differences between an actual symmetry
17

and

symmetrisation. A symmetry can be considered as a property of

the system which holds as long as it is unbroken. Therefore, WPT

can be optimal for an extended range of separation distances. Sym-

metrisation, on the other hand, can be used for achieving a specific

state of an individual system, which here corresponds to a specific

separation distance between the coupled circuits at a time. Another

fundamental difference occurs for two-mode systems in general,
18

where symmetrised but asymmetrically chosen parameters allow

for individual stationary states with real eigenvalues, whereas

a 𝒫𝒯-symmetric two-mode system may possess an entirely real

spectrum. Both of these differences stem from the fact that the 𝒫𝒯

operator is independent of the system, while the symmetrisation

operators are not;
19

they are constructed for a system with specific

parameters and thus cannot be applied if a parameter changes.

Therefore, symmetry and symmetrisation should be considered as

a property and as a tool, respectively.

Although this thesis attempts to give an overview about symmet-

ries and related concepts in physical but non-Hermitian systems,

much about their roles and relations is still unclear.
20

The investig-

ation of non-Hermitian systems—NHQM in particular—and the
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symmetries within them is already a popular and ongoing field of

research nowadays, which yields interesting and intriguing results.

Surely, his trend will continue and with it the quest for balancing

gain and loss.
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1
cf. Occam’s razor or

lex parsimoniae

Notations A
A-1 Derivatives

Table A-1: Common

and uncommon nota-

tions for different de-

rivatives. The rather

unusual notation for

mixed derivatives in

Lagrange’s notation

is used in Ref. [315].

type notation used by

Leibniz Euler Lagrange Newton

first-order
d𝑓
d𝑡 𝜕𝑡𝑓 𝑓

′ ̇𝑓

second-order
d2𝑓

d𝑡2
𝜕
2
𝑡 𝑓 𝑓

″ ̈𝑓

mixed
d2𝑓
d𝑥d𝑦 𝜕𝑥𝑦𝑓 𝑓

′
′

A-2 Bi-orthogonal notation

The common notation for quantum states introduced by Paul Dirac

in 1939 [316] describes vectors in Hilbert spaces by kets |𝜓⟩ and the

co-vectors by bras ⟨𝜓|. Bras and kets are related by the operation

of Hermitian adjungation. Further, the inner product is given by a

simple bra-ket ⟨𝜓|𝜓⟩. This notation is elegant and efficient when

dealing with standard QM in which operators are bound to be

Hermitian.

However, when dealing with a non-Hermitian operatorℋ, there

is not only the duality between bras and kets, which corresponds

toℋ andℋ
†
, but one must also distinguish between left-hand and

right-hand eigenstates ofℋ. This requires for another layer of

notation and provides a typographic challenge: On the one hand,

the notation should be as explicitly as possible, so that the reader

may quickly understand the meaning of an expression; on the other

hand, the notation should also be as simple as possible,
1
so that
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complex expressions will not become overly cluttered.

The simplest solution—used in Ref. [83] and subsequent pub-

lications, for example— is to use different symbols for left-hand

and right-hand states, e.g. |𝜓⟩ and |𝜑⟩. While this works well with

Dirac’s notation, the author is forced to use specific symbols con-

sistently and exclusively, which makes this kind of notation rather

inflexible. Further, the reader is forced to remember which symbols

are used for left-hand and which symbols are used for right-hand

states.

In Table A-2 different notations for bi-orthogonal states are

collected. The entries are ordered roughly by their expressiveness

from top to bottom and, at the same time, by their simplicity from

bottom to top. While the first notation is readily understandable

because of the indices R and L, it takes away from the elegance of

Dirac’s notation. The next two solutions modify Dirac’s notation

further by introducing new delimiters; they also explicitly highlight

the fact that a new inner product ⟨𝜓𝑛|𝜂|𝜓𝑚⟩ is introduced, where

𝜂 is the metric operator connecting the left-hand and right-hand

states. Although the third notation is elegant and simple, it is not

really consistent, as the c-product (𝜓𝑛|𝜓𝑚) is indistinguishable from

the product of two left-hand states. The last notation is based on

the index notation used in relativity theory and leaves the notation

of bras and kets unchanged.

To the author the last notation seems to be a good choice for the

following reasons: Dirac’s notation and its meaning are preserved

while another simple layer of information is introduced by the

positioning of the indices; i.e. subscripts are used for right-hand

states and superscripts are used for left-hand states. Further, the

Table A-2: Different

possible notations for

bi-orthogonal states

inspired by literature.

The index 𝜂 indicates

that left and right

states are related by a

metric operator with

the same symbol.

notation used in

left states right states inner product

⟨𝜓𝑛|L |𝜓𝑛⟩L ⟨𝜓𝑛|R |𝜓𝑛⟩R ⟨𝜓𝑛|𝜓𝑚⟩L R [84]

⟪𝜓𝑛| |𝜓𝑛⟫ ⟨𝜓𝑛| |𝜓𝑛⟩ ⟪𝜓𝑛|𝜓𝑚⟫𝜂 [83]

(𝜓𝑛| |𝜓𝑛) ⟨𝜓𝑛| |𝜓𝑛⟩ (𝜓𝑛|𝜓𝑚) [58]

⟨𝜓
𝑛
| |𝜓

𝑛
⟩ ⟨𝜓𝑛| |𝜓𝑛⟩ ⟨𝜓

𝑛
|𝜓𝑚⟩ [317]
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2
lower-angled

vertical bars

3
upper-angled

vertical bars

meaning of an expression can readily be understood by any reader

with some education in physics, since the notations are already

familiar. To obtain a corresponding representation of objects

without indices, one may lend on a notation used in quantum field

theories, where left-hand mathematical objects are underlined,

while right-hand mathematical objects are overlined. Last but not

least, a corresponding notation for norms could be introduced

by drawing on the notation used for flooring
2
and ceiling.

3
This

allows for a simple, compact, and mostly consistent notation that is

illustrated with several examples in the following section.

a) Examples

1) Right-hand representations of bras and kets with indices are

indicated by subscripts,

⟨𝜓𝑛∣ , ∣𝜓𝑛⟩ ,

and otherwise by underlining,

⟨𝜓∣ , ∣𝜓⟩ .

2) Left-hand representations of bras and kets with indices are

indicated by superscripts,

⟨𝜓
𝑛
∣ , ∣𝜓

𝑛
⟩ ,

and otherwise by overlining,

⟨𝜓∣ , ∣𝜓⟩ .

3) States are orthogonal with respect to the mixed inner product

⟨𝜓
𝑛
∣𝜓𝑚⟩ ∝ 𝛿𝑛𝑚 .
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4) It is important with respect to which inner product physical

quantities are defined,

⌊𝜓⌋ ≡ ⟨𝜓∣𝜓⟩
?
← ∣𝜓∣

2 ?
→ ⟨𝜓∣𝜓⟩ ≡ ⌈𝜓⌋ .

5) It is immediately clear to which handedness a mathematical

objects belongs, i.e.

𝜌 =∑

𝐸

𝑝
𝐸
|𝐸⟩⟨𝐸| ,

𝜌 =∑

𝐸

𝑝𝐸 |𝐸⟩⟨𝐸| .

6) Even complex expressions like matrix elements are still readable,

𝜌𝑘𝑙 =∑
𝑛

⟨𝜑𝑘∣𝜓
𝑛
⟩ ⟨𝜓

𝑛
∣𝜑𝑙⟩ ,

𝜌
𝑘𝑙
=∑

𝑛

⟨𝜑
𝑘
∣𝜓𝑛⟩ ⟨𝜓𝑛∣𝜑

𝑙
⟩ .
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1
cf. Section 2-2 c)

Physical operators in

quantum mechanics

B

Noether’s theorem connects the emergence of continuous sym-

metries to the existence of conserved quantities. As discussed in

Section 2-2 a), rotations and boosts are the fundamental symmetries

of the Lorentz group. However, the representations used in this

section are all finite-dimensional, i.e. the transformations are rep-

resented by matrices acting on constant objects. However, in most

situations the objects will change in space and time. Hence, for

more advanced theories an infinite-dimensional representation of

the Lorentz group has to be considered—the field representation—

in which the generators are given by differential operators.

The fundamental symmetries of spacetime are translations,

rotations, and boosts.
1
Each of these symmetries possesses its

own symmetry generators which are listed in Table B-1. In QM the

operators that correspond to physical quantities can be identified

with the symmetry generators. Hence, in position space one finds

�̂�𝑘 = 𝑥𝑘 , (B-1)

�̂�𝑘 = −i𝜕𝑥𝑘
, (B-2)

�̂� = i𝜕𝑡 , (B-3)

�̂� =
i

2
𝜖𝑘𝑙𝑚(𝑥𝑙𝜕𝑥𝑚

−𝑥𝑚𝜕𝑥𝑙
) . (B-4)

Table B-1: Physical

quantities and their

symmetry generators

[15]. Each of these

symmetries can be un-

derstood as a trans-

lation. Note that the

conserved quantity of

boosts is zero for a

suitable choice of 𝑡.

symmetry generator conserved quantity

temporal translations i𝜕0 𝐸

spatial translations −i𝜕𝑘 𝐩

rotations i
2𝜖𝑘𝑙𝑚(𝑥

𝑙
𝜕
𝑚
−𝑥

𝑚
𝜕
𝑙
) 𝐋

boosts i(𝑥
0
𝜕𝑘 −𝑥𝑘𝜕

0
) 𝑡𝐩 − 𝐱𝐸 ≡ 0
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These operators act on physical states that are elements of infinite-

dimensional Hilbert spaces. From Eqs. (B-1) and (B-2) also the

fundamental commutator relation

[�̂�𝑘, �̂�𝑙] = i𝛿𝑘𝑙(B-5)

can be obtained.

Note that, although there exists no symmetry concerning the

conservation of the position itself, the identification (B-1) can be

made using the conserved quantity of boosts from Table B-1 and
Eqs. (B-2) to (B-4), cf. Ref. [15] and references therein.

B-1 Boundedness

While the position-space representation of QM corresponds to an

infinite-dimensional Hilbert space, the physical operators defined

on it are unbounded. In contrast, physical operators defined on

finite-dimensional Hilbert spaces are bounded. To see this, consider

an operator 𝒪 defined on an 𝑛-dimensional complex vector space

𝐻. By choosing a basis {�̂�1,… , �̂�𝑛} of the vector space, the linear

transformation defined by 𝒪 is given by

𝒪𝑥 =

𝑛

∑

𝑖=1

𝑥𝑖𝒪�̂�𝑖 .

With the triangle inequality the norm can be written as

∥𝒪𝑥∥ =
∥
∥
∥
∥

𝑛

∑

𝑖=1

𝑥𝑖𝒪�̂�𝑖
∥
∥
∥
∥
≤

𝑛

∑

𝑖=1

∣𝑥𝑖∣∥𝒪�̂�𝑖∥ ≤ 𝑀

𝑛

∑

𝑖=1

∣𝑥𝑖∣ .(B-6)

In the last step each norm of the images of the basis vectors is

replaced by the their maximum𝑀= sup𝑗 ‖𝒪�̂�𝑗‖, respectively.

Because all norms on finite-dimensional vector spaces are equiv-

alent, that is

∼
𝐶‖𝑥‖ ≤

𝑛

∑

𝑖=1

∣𝑥𝑖∣ ≤ 𝐶‖𝑥‖ ,
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Eq. (B-6) is bounded from above, i.e.

∥𝒪𝑥∥ ≤ 𝜆‖𝑥‖

with 𝜆 = 𝐶𝑀, which means that 𝒪 is bounded. A more general

statement, which also holds in infinite dimensions, is made by the

Hellinger–Toeplitz theorem: Any operator which is Hermitian with

respect to a given inner product and which is defined on the entire

Hilbert space that corresponds to this inner product is bounded

[318].

From a more physical point of view it is often reasonable to

assume the boundedness of an operator which describes an ob-

servable, even though the underlying Hilbert space is infinite-

dimensional. As argued in Refs. [84; 319], in most experiments

only a function of the observable 𝑓(𝒪) is measured. Even if 𝒪 is

unbounded, the function 𝑓(𝒪) might be bounded and yields the

same information as 𝒪 if it is invertible.

B-2 Matrix representations

Matrix representations are an important concept in QM and can

simplify the understanding of the abstract concept of operators.

Consider an orthonormal basis { ̂𝑒𝑘} which satisfies the closure

relation

∑

𝑘

∣ ̂𝑒𝑘⟩⟨ ̂𝑒𝑘∣ = 𝟙 .

Further, consider an operator 𝒪 and its eigenstates {𝜑𝑘}, which can

be expanded in the orthonormal basis with complex coefficients

𝜑𝑘,

∣𝜑𝑘⟩ =∑

𝑙

𝜑𝑙 ∣ ̂𝑒𝑙⟩

The operator 𝒪 satisfies an eigenvalue equation

𝒪 ∣𝜑𝑘⟩ = 𝑜𝑘 ∣𝜑𝑘⟩ (B-7)
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with the corresponding eigenvalues 𝑜𝑘. Multiplied by ⟨ ̂𝑒𝑙|, the

eigenvalue equation (B-7) yields

∑

𝑘

𝒪𝑙𝑘𝜑𝑘 = 𝑜𝑘𝜑𝑘𝛿𝑙𝑘 ,(B-8)

where

𝒪𝑙𝑘 = ⟨ ̂𝑒𝑙∣ℋ∣ ̂𝑒𝑘⟩(B-9)

are the elements of the operator matrix and 𝛿𝑙𝑘 = ⟨ ̂𝑒𝑙| ̂𝑒𝑘⟩.

In general, Eq. (B-8) is an infinite-dimensional matrix equation.

However, a finite-dimensional representation can be used as an

approximation; it converges towards the exact solution if the dimen-

sion goes to infinity. If the spectrum of the operator 𝒪 is bounded

from below, then the eigenvalues of a finite-dimensional matrix

approximation are upper bounds to the exact eigenvalues of 𝒪.

This property is called the Hylleraas–Undheim–MacDonald linear

variational theorem [320; 321].

B-3 The Hermitian adjoint

Consider a general complex matrix O that represents a physical

operator 𝒪. The matrix elements of O are given by Eq. (B-9) with
the orthogonal basis { ̂𝑒𝑘}. Since

⟨ ̂𝑒𝑘∣𝒪
†
̂𝑒𝑙⟩ = ⟨𝒪

†
̂𝑒𝑙∣ ̂𝑒𝑘⟩

∗
= ⟨ ̂𝑒𝑙∣𝒪 ̂𝑒𝑘⟩

∗
,

one finds that

O
†
= (O

⊺
)
∗
,(B-10)

which is the usual definition of the Hermitian adjoint.

However, one has to keep in mind that the property (B-10) holds
for the matrix representation of the operator, but not necessarily

for the operator itself. This can easily be seen by trying to express
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O
⊺
in a similar fashion,

⟨ ̂𝑒𝑙∣𝒪 ̂𝑒𝑘⟩ = ⟨ ̂𝑒𝑘∣𝒪
†
̂𝑒𝑙⟩
∗
≠ ⟨ ̂𝑒𝑘∣(𝒪

†
)
∗
̂𝑒𝑙⟩ = ⟨ ̂𝑒𝑘∣𝒪

⊺
̂𝑒𝑙⟩ . (B-11)

Only if the basis functions are real, the inequality in Eq. (B-11)
becomes an equality, so that Eq. (B-10) holds for the corresponding
operator.
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1
𝑇(𝑧,𝑧

∗
) has to be

understood as a nota-

tion only. However,

𝑇(𝑧,𝑧) defines an

analytic continuation

for 𝑧 ≠ 𝑧
∗
.

Wigner's theorem C
Wigner’s theorem states that the transformations 𝑇 which leave

the inner product unchanged, that is

∣⟨𝑇𝜙∣𝑇𝜓⟩∣ = ∣⟨�̃�∣𝜓⟩∣ , (C-1)

are either unitary or anti-unitary [35]. A rather simple derivation

of this statement is given in Ref. [43], which is summarised in the

following.

To find the properties of 𝑇, it is useful to first consider the

simplest possible Hilbert spaceℋ=ℂ, in which all states |𝜓⟩ are

just complex numbers 𝜓. Then, a transformation 𝑇 ∶ ℂ → ℂ can be

considered as a function of either a single complex argument or

two real arguments,
1

𝑇(Re𝑧, Im𝑧) = 𝑇(
𝑧 + 𝑧

∗

2
,
𝑧 − 𝑧

∗

2i
) ≡ 𝑇(𝑧,𝑧

∗
) .

In this sense, Eq. (C-1) reads

∣𝑇
∗
(𝜙,𝜙

∗
)𝑇(𝜓,𝜓

∗
)∣ = ∣𝜙

∗
𝜓∣ . (C-2)

For |𝜙
∗
𝜓| ≠ 0, Eq. (C-2) can be written as |𝑄| = 1 with the solutions

𝑄 = exp(±i𝜃). Therefore,

𝑇
∗
(𝜙,𝜙

∗
)𝑇(𝜓,𝜓

∗
) = 𝜙

∗
𝜓e

i𝜃(𝜙,𝜙∗,𝜓,𝜓∗)
, (C-3)

𝑇
∗
(𝜓,𝜓

∗
)𝑇(𝜙,𝜙

∗
) = 𝜙

∗
𝜓e

i𝜃(𝜓,𝜓∗,𝜙,𝜙∗)
. (C-4)

Equations (C-3) and (C-4) are the representations of 𝑄 and 𝑄
∗

for |𝑄| = 1, so that 𝜃(𝜓,𝜓
∗
, 𝜙,𝜙

∗
) = −𝜃(𝜙,𝜙

∗
,𝜓,𝜓

∗
). However,

for the following argument 𝜃 and 𝜃 can be considered as distinct

functions that are twice differentiable.

It proves useful to redefine the phase of 𝑇(𝑧,𝑧
∗
),

�̃�(𝑧,𝑧
∗
) = 𝑇(𝑧,𝑧

∗
) e

i𝛼(𝑧,𝑧∗)
,
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so that

�̃�
∗
(𝜙,𝜙

∗
)�̃�(𝜓,𝜓

∗
) = 𝜙

∗
𝜓e

i�̃�(𝜙,𝜙∗,𝜓,𝜓∗)
,

�̃�
∗
(𝜓,𝜓

∗
)�̃�(𝜙,𝜙

∗
) = 𝜙

∗
𝜓e

i�̃�(𝜓,𝜓∗,𝜙,𝜙∗)

with

�̃�(𝜙,𝜙
∗
,𝜓,𝜓

∗
) = 𝜃(𝜙,𝜙

∗
,𝜓,𝜓

∗
) − 𝛼(𝜙,𝜙

∗
) + 𝛼(𝜓,𝜓

∗
) ,

�̃�(𝜓,𝜓
∗
, 𝜙,𝜙

∗
) = 𝜃(𝜓,𝜓

∗
, 𝜙,𝜙

∗
) − 𝛼(𝜓,𝜓

∗
) + 𝛼(𝜙,𝜙

∗
) .

By choosing 𝛼(𝜓,𝜓
∗
) = −𝜃(0, 0,𝜓,𝜓

∗
), the term �̃�(0, 0,𝜓,𝜓

∗
) can

be cancelled. In the same manner 𝛼(𝜓,𝜓
∗
) = 𝜃(𝜓,𝜓

∗
, 0, 0) cancels

the term �̃�(𝜓,𝜓
∗
, 0, 0). Therefore,

𝜃(0, 0,𝜓,𝜓
∗
) = 0 ,

d

d𝜓
𝜃(0, 0,𝜓,𝜓

∗
) =

d

d𝜓∗
𝜃(0, 0,𝜓,𝜓

∗
) = 0 ,(C-5)

𝜃(𝜓,𝜓
∗
, 0, 0) = 0 ,

d

d𝜓
𝜃(𝜓,𝜓

∗
, 0, 0) =

d

d𝜓∗
𝜃(𝜓,𝜓

∗
, 0, 0) = 0(C-6)

for all choices of 𝜓 without a loss of generality.

Finally, Eqs. (C-3) and (C-4) can be differentiated with respect

to 𝜓 and 𝜙
∗
by using the complex derivatives

d

d𝑧
=
d𝑥

d𝑧

d

d𝑥
+
d𝑦

d𝑧

d

d𝑦
=
1

2
(
d

d𝑥
− i

d

d𝑦
) ,

d

d𝑧∗
=
d𝑥

d𝑧∗
d

d𝑥
+
d𝑦

d𝑧∗
d

d𝑦
=
1

2
(
d

d𝑥
+ i

d

d𝑦
) ,

where 𝑥 = (𝑧 + 𝑧
∗
)/2 and 𝑦 = (𝑧 − 𝑧

∗
)/2i are the real and the

imaginary part of 𝑧, respectively.

1) After the differentiation of Eq. (C-3), the left-hand side reads

d

d𝜙∗
d

d𝜓
𝑇
∗
(𝜙,𝜙

∗
)𝑇(𝜓,𝜓

∗
) = [

d

d𝜙
𝑇(𝜙,𝜙

∗
)]
∗ d

d𝜓
𝑇(𝜓,𝜓

∗
) .

The term on the right-hand side is given by

⎡⎢
⎣
1 + i𝜓

d𝜃

d𝜓
+ i𝜙

∗ d𝜃

d𝜙∗
−𝜙

∗ d𝜃

d𝜙∗
𝜓
d𝜃

d𝜓
+ i𝜙

∗
𝜓

d
2
𝜃

d𝜙∗ d𝜓
⎤⎥
⎦
e
i𝜃
,(C-7)
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where the arguments of 𝜃 were omitted in favour of a clearer

visual representation. For 𝜙 = 𝜙
∗
= 0, the right-hand side

becomes unity because of Eq. (C-5). Thus,

[
d

d𝜓
𝑇(𝜓,𝜓

∗
)∣
𝜓=𝜓∗=0

]

∗
d

d𝜓
𝑇(𝜓,𝜓

∗
) = 1 , (C-8)

where the tilde was omitted for convenience. Since this equation

holds for all 𝜓, the transformation 𝑇(𝜓,𝜓
∗
) is linear in 𝜓, so

that

𝑇(𝜓,𝜓
∗
) =

d

d𝜓
𝑇(𝜓,𝜓

∗
)∣
𝜓=𝜓∗=0

𝜓, (C-9)

since 𝑇(0,0) = 0 due to Eq. (C-3).

2) The differentiation of Eq. (C-4) yields a similar result. In fact,

the right-hand side does not change at all, as all terms in the

counterpart of Eq. (C-7) which contain 𝜃 or its derivatives vanish
according to Eq. (C-6). This finally yields

⎡⎢
⎣

d

d𝜓∗
𝑇(𝜓,𝜓

∗
)∣
𝜓=𝜓∗=0

⎤⎥
⎦

∗
d

d𝜓∗
𝑇(𝜓,𝜓

∗
) = 1 . (C-10)

In this case, 𝑇(𝜓,𝜓
∗
) depends linearly on 𝜓

∗
and is therefore

anti-linear,

𝑇(𝜓,𝜓
∗
) =

d

d𝜓∗
𝑇(𝜓,𝜓

∗
)∣
𝜓=𝜓∗=0

𝜓
∗
. (C-11)

The generalisation of this concept to any Hilbert space is straight-

forward [43]. Consider

⟨𝜙∣𝜓⟩ =∑
𝑛

⟨𝜙∣𝜑𝑛⟩ ⟨𝜑𝑛∣𝜓⟩ =∑
𝑛

𝜙
∗
𝑛𝜑𝑛 ≡ 𝜙

∗
𝜓,

where 𝜓 and 𝜙 are sequences of the projections of the states |𝜓⟩

and |𝜙⟩ onto the basis states 𝜑𝑛. Then,

⟨𝜑𝑛∣𝑇𝜓⟩ =∑
𝑚

⟨𝜑𝑛∣𝒰∣𝜑𝑚⟩ ⟨𝜑𝑚∣𝜓⟩ =∑
𝑚

𝒰𝑛𝑚𝜓𝑚
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2
cf. Eq. (2-42)

with

𝒰𝑛𝑚 = (
d

d𝜓
𝑇(𝜓,𝜓

∗
)∣
𝜓=𝜓∗=0

)

𝑛𝑚

.

according to Eq. (C-9). The property (C-8) shows that the operator
𝒰 is unitary, i.e.

𝒰
†
𝒰 = 𝒰𝒰

†
= 𝟙 ,

𝒰(𝑎 |𝛼⟩ + 𝑏 ∣𝛽⟩) = 𝑎𝒰 |𝛼⟩ + 𝑏𝒰 ∣𝛽⟩ .

The same argumentation holds for Eq. (C-11), which yields

⟨𝜑𝑛∣𝑇𝜓⟩ =∑
𝑚

⟨𝜑𝑛∣𝒜∣𝜑𝑚⟩ ⟨𝜑𝑚∣𝜓⟩ =∑
𝑚

𝒜𝑛𝑚𝜓𝑚

with

𝒜𝑛𝑚 = (
d

d𝜓∗
𝑇(𝜓,𝜓

∗
)∣
𝜓=𝜓∗=0

)

𝑛𝑚

.

Equation (C-10) shows that the operator 𝒜 is anti-unitary, i.e.
2

𝒜
†
𝒜 = 𝒜𝒜

†
= 𝟙 ,

𝒜(𝑎 |𝛼⟩ + 𝑏 ∣𝛽⟩) = 𝑎
∗
𝒜|𝛼⟩ + 𝑏

∗
𝒜∣𝛽⟩ ,

where the adjoint of 𝒜 must not be understood in the ordinary

sense, but is instead defined by ⟨𝜙|𝒜𝜓⟩ = ⟨𝒜𝜙|𝜓⟩
∗
.
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Avoided crossing theorem D
Consider a Hamiltonianℋ0 with at least two eigenvalues 𝐸1 and

𝐸2 that are closely together but not identical, i.e. |𝐸1 −𝐸2| ≪ 1;

their corresponding eigenstates are |𝜓1⟩ and |𝜓2⟩. One may ask

in which cases the eigenvalues intersect on the variation of some

parameters of the system. Or in other words, in which cases do the

energy levels cross?

To investigate this, one might follow the argumentation in

Ref. [322] by considering a general perturbation ℋ1 which de-

pends on a set of parameters {𝑟1,… , 𝑟𝑛} for 𝑛 ≥ 1 and defines a new

Hamiltonian

ℋ(𝑟1,… , 𝑟𝑛) = ℋ0 +ℋ1(𝑟1,… , 𝑟𝑛) . (D-1)

As a first approximation the superposition |𝜓⟩ = 𝑎 |𝜓1⟩ + 𝑏 |𝜓2⟩

may be chosen as an ansatz for a perturbed eigenstate of the

Hamiltonian (D-1). The corresponding Schrödinger equation then

reads

𝑎(𝐸1 −𝐸+ℋ1) ∣𝜓1⟩ + 𝑏(𝐸2 −𝐸+ℋ1) ∣𝜓2⟩ = 0 , (D-2)

where 𝐸 is the eigenvalue of |𝜓⟩. By multiplying Eq. (D-2) by ⟨𝜓1|
and ⟨𝜓2|, respectively, one finds the linear system of equations

⎛⎜
⎝

𝐸1 −𝐸+𝑃11 𝑃12
𝑃21 𝐸2 −𝐸+𝑃22

⎞⎟
⎠

⎛⎜
⎝

𝑎

𝑏
⎞⎟
⎠
= 0 ,

where 𝑃𝑛𝑚 = ⟨𝜓𝑛|ℋ1|𝜓𝑚⟩ are the matrix elements of the perturb-

ation. A solution for this system of equations exists only if the

determinant of the coefficient matrix vanishes. This yields an

equation for the perturbed eigenvalue,

𝐸 =
1

2
(𝐸1 +𝐸2 +𝑃11 +𝑃22) ± √

1

4
(𝐸1 −𝐸2 +𝑃11 −𝑃22)

2
+𝑃12𝑃21 .
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𝑟1

𝐸
𝐸1

𝐸2

Figure D-1: Avoided
crossing of two ener-

gy levels

The eigenvalues coincide if the square root vanishes. Since the two

terms under the square root are independent, both of them must

vanish simultaneously, which implies

𝐸1 −𝐸2 +𝑃11 −𝑃22 = 0 ,(D-3)

𝑃12𝑃21 = 0 .(D-4)

Note that 𝑃12 = 𝑃21 for a Hermitian perturbation, i.e.ℋ
†
1 = ℋ1.

However, it is not necessary to require such a property here.

Now, consider the one-dimensional case with 𝑛 = 1 first. For

one parameter, namely 𝑟1, there exists no possibility to satisfy

both Eqs. (D-3) and (D-4) simultaneously in general. However, the

off-diagonal elements in Eq. (D-4) vanish identically if the states

have different symmetries [322], so that only Eq. (D-3) has to be
satisfied. The reason can be understood within the framework of

group theory: Consider an operator 𝒪 of a scalar, physical quantity.

Such an operator is by definition invariant under all symmetry

transformations. The matrix elements of 𝒪 are given by

𝒪𝑛𝑚 = ⟨𝜓
(𝛼)
𝑛 ∣𝒪∣𝜓

(𝛽)
𝑚 ⟩ ,(D-5)

where 𝛼 and 𝛽 indicate that the respective state belongs to a certain

set of degenerate energy levels. Let the irreducible representations

of their corresponding symmetry groups be 𝐷
(𝛼)

and 𝐷
(𝛽)

. Since

𝒪 is invariant with respect to all symmetry transformations, the

matrix elements (D-5) belong to the representation given by the

direct product 𝐷
(𝛼)
⊗𝐷

(𝛽)
. If 𝛼 = 𝛽, this representation contains

the trivial representation which maps each element to 𝟙. In this

case Eq. (D-5) reads

𝒪𝑛𝑚 = 𝑂𝛿𝑛𝑚 ,

where 𝑂 is a constant [322]. If 𝛼 ≠ 𝛽, on the other hand, then

𝐷
(𝛼)
⊗𝐷

(𝛽)
does not contain the trivial representation. Thus, the

matrix elements (D-5) must vanish, as there would occur changes

under a symmetry transformation otherwise.

As a conclusion, two energy levels cannot cross if they possess

the same symmetry [323]; this statement is called the avoided
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crossing theorem and it is the origin of selection rules. Despite

this being said, two energy levels might still cross within perturba-

tional calculations in low order. However, they will move apart on

calculating the next order of the approximation [322] as shown in

Fig. D-1; this is a typical example of an avoided crossing.

For multiple parameters, i.e. 𝑛 > 1, Eqs. (D-3) and (D-4) can
both be satisfied in general, so that there are crossings of the

energy levels. From a geometric point of view the crossings appear

on a (𝑛 − 2)-dimensional manifold in the 𝑛-dimensional parameter

space defined by {𝑟1,… , 𝑟𝑛}. If the energy levels possess different

symmetries, then there again remains only the conditional equation

(D-3). Thus, in this case the dimension of the crossing manifold is

𝑛 − 1.

However, the accidental crossing of two eigenvalues which are

sharing the same symmetry is not completely excluded by the

avoided crossing theorem [58; 324–327]; though, this occurs rather

rarely and is thus quite unlikely in QM according to Ref. [58]. Such

accidental crossings are associated with hidden symmetries of a

system, which are often more of a mathematical phenomenon than

of real physical relevance.
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1
e.g. see Ref. [209]

2
cf. Eq. (2-39)

Gaussian potential matrix

approximation

E

E-1 Frozen Gaussian ansatz

Consider the Schrödinger equation i |�̇�⟩ = ℋ |𝜓⟩ with a potentially

non-Hermitian Hamiltonianℋ. The frozen Gaussian ansatz
1
reads

∣𝜓⟩ =

𝑛

∑

𝑘=1

𝑐𝑘(𝑡) ∣𝑔𝑘⟩ (E-1)

with the time-dependent complex coefficients 𝑐𝑘 and Gaussian

functions 𝑔𝑘(𝐫) = ⟨𝑟|𝜓⟩. The insertion of the ansatz (E-1) into the
Schrödinger equation and a multiplication by ⟨𝑔𝑙| yields

i

𝑛

∑

𝑘=1

⟨𝑔𝑙∣𝑔𝑟⟩︸ ︷︷ ︸
≡ 𝐾𝑙𝑘

̇𝑐𝑘(𝑡) =

𝑛

∑

𝑘=1

⟨𝑔𝑙∣ℋ∣𝑔𝑘⟩︸ ︷︷ ︸
≡𝐻𝑙𝑘

𝑐𝑘(𝑡) ,

which can be written as the matrix equation

i𝐾�̇�(𝑡) = 𝐻𝐯(𝑡) (E-2)

with 𝐯(𝑡) = (𝑐1(𝑡),… ,𝑐𝑛(𝑡))
⊺
.

The calculation for the corresponding time-independent Schrö-

dinger equation
2
is straightforward and yields

𝐻𝐯 = 𝐸𝐾𝐯. (E-3)
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E-2 Symmetric orthogonalisation

If 𝐾 is a real-valued diagonal matrix, then Eq. (E-3) can be written

in Schrödinger form via symmetric orthogonalisation [209; 328],

𝐾
−1/2

𝐻𝐾
−1/2︸ ︷︷ ︸

≡ℋeff

√𝐾𝐯︸ ︷︷ ︸
≡∣𝜓⟩

eff

= 𝐸 √𝐾𝐯︸ ︷︷ ︸
≡∣𝜓⟩

eff

,

where 𝐾
−1/2

is the square root of 𝐾
−1

with the diagonal elements

1/√𝑘 for every diagonal element 𝑘 of 𝐾. This can be generalised

for non-diagonal matrices 𝐾 with 𝐾
−1/2

→ 𝑋, so that 𝑋𝐾𝑋 = 𝟙

holds in general. Then

𝑋𝐻𝑋︸ ︷︷ ︸
≡ℋeff

𝑋
−1
𝐯︸ ︷︷ ︸

≡∣𝜓⟩
eff

= 𝐸𝑋𝐾𝑋︸ ︷︷ ︸
=𝟙

𝑋
−1
𝐯︸ ︷︷ ︸

≡∣𝜓⟩
eff

.

This is possible due to 𝐾 being Hermitian, i.e.

𝐾𝑙𝑘 = ⟨𝑔𝑙|𝑔𝑘⟩ = ⟨𝑔𝑘|𝑔𝑙⟩
∗
= 𝐾

∗
𝑘𝑙 .

Therefore, 𝐾 is similar to a real-valued diagonal matrix 𝐷 = 𝑈
†
𝐾𝑈,

where 𝑈 is a unitary matrix. This holds for any arbitrary function

of 𝐾 and thus 𝑋 = 𝑈𝐷
−1/2

𝑈
†
is Hermitian with

𝑋𝐾𝑋 = 𝑈𝐷
−1/2

𝑈
†
𝐾𝑈︸ ︷︷ ︸
=𝐷

𝐷
−1/2

𝑈
†
= 𝑈𝑈

†
= 𝟙 .

Of course, this line of argument is applicable analogously in the

time-dependent case using Eq. (E-2).

Remarks

— The symmetric orthogonalisation can be considered as an LDL

Cholesky decomposition of 𝐾 with a lower triangular matrix 𝑈.

— The effective Hamiltonianℋeff is Hermitian if𝐻 is Hermitian.
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— The norm of the effective wave function |𝜓eff⟩ is well defined,

i.e.

⟨𝜓∣𝜓⟩ = 𝐯
†
𝐾𝐯 = 𝜓

†
eff𝜓eff .

— 𝐾 is a metric operator and defines the norm ⟨𝑣|𝐾|𝑣⟩.
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Delta potentials F
A simple spatial extension of the two-dimensional, non-Hermitian

matrix model is a complex, one-dimensional double-delta potential

as shown in Fig. F-1. Such a potential can be written as

𝑉(𝑥) = 𝛥1𝛿(𝑥 +
𝑎

2
) +𝛥2𝛿(𝑥 −

𝑎

2
) , (F-1)

where 𝛥1 = 𝜖1+i𝛾1 and 𝛥2 = 𝜖2+i𝛾2, i.e. 𝜖1, 𝜖2 and 𝛾1, 𝛾2 are the

real and imaginary parts of the delta peaks at the positions 𝑥 = ±𝑎/2,

respectively. The corresponding time-independent Schrödinger

equation reads

ℋ𝜓(𝑥) = 𝜇𝜓(𝑥) (F-2)

with the Hamiltonian

ℋ= −𝜕
2
𝑥 +𝑉(𝑥) .

𝑥
−𝑎
2

𝛥1

𝑎
2

𝛥2

𝜓(𝑥)

Figure F-1: The wave
function in a double-

delta potential

In the potential-free case the Schrödinger equation reduces to

𝜕
2
𝑥𝜓(𝑥) = 𝑘

2
𝜓(𝑥)

with 𝑘 = √−𝜇. Therefore, the ansatz for the wave function in

between and outside of the delta peaks reads

𝜓(𝑥) =

⎧
{
{
⎨
{
{
⎩

𝜓
′
1 e

𝑘𝑥
, 𝑥 < −𝑎2

𝜓1 e
−𝑘𝑥

+𝜓2 e
𝑘𝑥
, |𝑥| ≤ 𝑎

2

𝜓
′
2 e

−𝑘𝑥
, 𝑥 > 𝑎

2

, (F-3)

assuming that Re𝑘 ≥ 0. This assumption corresponds to bound

states with real, negative energies. In general, though, 𝜇 is complex

for the potential (F-1).
The wave function must be continuous at 𝑥 = ±𝑎/2, i.e.

𝜓1 e
𝑘𝑎
2 +𝜓2 e

−𝑘𝑎2 = 𝜓
′
1 e

−𝑘𝑎2 , (F-4)
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𝜓1 e
−𝑘𝑎2 +𝜓2 e

𝑘𝑎
2 = 𝜓

′
2 e

−𝑘𝑎2 .(F-5)

Another set of equations can be found by integrating the Schrö-

dinger equation (F-2) in the proximity around the delta peaks, that

is

lim
𝜖→0

(𝜕𝑥𝜓(𝑥)∣−𝑎2−𝜖
− 𝜕𝑥𝜓(𝑥)∣−𝑎2+𝜖

) = 𝛥1𝜓(
𝑎

2
) ,

lim
𝜖→0

(𝜕𝑥𝜓(𝑥)∣𝑎
2−𝜖

− 𝜕𝑥𝜓(𝑥)∣𝑎
2+𝜖

) = 𝛥2𝜓(
𝑎

2
) ,

By using Eqs. (F-3) to (F-5), one finally finds

⎛⎜⎜

⎝

(1 + 2𝑘
𝛥2
)e

𝑘𝑎
1

1 (1 + 2𝑘
𝛥1
)e

𝑘𝑎

⎞⎟⎟

⎠

⎛⎜
⎝

𝜓1
𝜓2

⎞⎟
⎠
= 0 .(F-6)

Equation (F-6) is a conditional equation for the coefficients of the

wave function in between the two delta peaks and yields a solution

only if the determinant of the coefficient matrix vanishes, i.e.

(1 +
2𝑘

𝛥1
)(1 +

2𝑘

𝛥2
) = e

−2𝑘𝑎
.

Steady-state solutions

Assuming that the solutions of Eq. (F-6) are both bound, i.e. 𝜇 < 0,

and stationary, i.e. 𝜇 ∈ ℝ, then one finds that 𝑘 ∈ ℝ. If 𝛥1𝛥2 ≠ 0,

Eq. (F-6) can be written in the form of two real equations

4𝑘
2
+ 2𝑘(𝜖1 + 𝜖2) = (𝜖1𝜖2 − 𝛾1𝛾2)(e

−2𝑘𝑎
− 1) ,(F-7)

2𝑘(𝛾1 + 𝛾2) = (𝜖1𝛾2 + 𝛾1𝜖2)(e
−2𝑘𝑎

− 1) .(F-8)

Now, consider the following cases:

1) For 𝜖1 = 𝜖2 and 𝛾1 = −𝛾2, Eq. (F-8) vanishes completely and

two real solutions may occur due to Eq. (F-7). As discussed
in Section 5-5, a potential with a symmetric real and an anti-

symmetric imaginary part is 𝒫𝒯-symmetric.
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2) In all other cases one of the solutions is always the trivial solution

with 𝑘 = 0; its corresponding wave function vanishes everywhere

due to the normalisability and continuity conditions. The reason

for this is quite simple: The solutions of Eqs. (F-7) and (F-8) are
the common intersections of a straight line, a parabola, and

an exponential function. Both equations are solved trivially by

𝑘 = 0, though, only Eq. (F-7) allows also for other solutions.

Therefore, Eq. (F-8) must vanish, which corresponds again to

the first case.
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Bi-complex numbers G
Consider an ordinary complex number 𝑧 ∈ ℂ which can be written

as

𝑧 = 𝑥+ i𝑦 (G-1)

with the coefficients 𝑥,𝑦 ∈ ℝ. The imaginary unit is defined as

usual by i
2
= −1.

A bi-complex number is obtained when the real coefficients

in Eq. (G-1) become complex themselves with respect to another

imaginary unit j, i.e.

𝑧 = (𝑥1 + j𝑥j) + i(𝑦1 + j𝑦j) ≡ 𝑧1 + i𝑧i + j𝑧j + k𝑧k , (G-2)

where k = ij. Equation (G-2) is called the vector representation of

a bi-complex number. Because j is an ordinary imaginary unit, it is

also defined by j
2
= −1. Therefore,

k
2
= i

2
j
2
= 1 ,

i.e. k is not an imaginary unit but just an abbreviation. Of course, i

and j are freely interchangeable, so none of them is distinguished.

Note that this procedure can be repeated 𝑛 times, so that hyper-

complex numbers with 2
𝑛+1

coefficients are formed, i.e. 𝑛 = 0

corresponds to the usual complex numbers and 𝑛 = 1 to bi-complex

numbers.

G-1 Idempotent basis

In principle, Eq. (G-2) summarises all there is to know about bi-

complex numbers already. However, there exists a bi-complex

representation with particular favourable properties, which can be

used to simplify bi-complex calculations. To find it, consider the
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special bi-complex numbers

e± =
1± k

2
.(G-3)

These numbers are quite interesting because

1) they are zero divisors and thus form sort of an “orthogonal

basis”, i.e.

e+e− = 0 ,(G-4)

2) they are idempotent, meaning

e
2
± = e± .(G-5)

Therefore, the numbers (G-3) are called the idempotent basis of bi-

complex numbers. With the basis elements (G-3) the bi-complex

number (G-2) can be written in its idempotent representation

𝑧 = 𝑧+e+ +𝑧−e−(G-6)

with 𝑧± ∈ ℂ. Because none of the two imaginary units is distin-

guished, the complex coefficients can be expressed either with

respect to i, that is

𝑧± = (𝑧1 ±𝑧k) + i(𝑧i ∓𝑧j) ,

or with respect to j, that is

𝑧± = (𝑧1 ±𝑧k) + j(𝑧i ∓𝑧j) .

G-2 Bi-complex conjugation

Since bi-complex numbers possess two imaginary units, there exist

also two different methods for complex conjugation.
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1
e.g. see Ref. [329]

1) The usual complex conjugation with respect to i reads

𝑧
∗
= 𝑧1 − i𝑧i + j𝑧j − k𝑧k = 𝑧

∗
−e+ +𝑧

∗
+e− . (G-7)

2) The complex conjugation with respect to j is defined as

𝑧 = 𝑧1 + i𝑧i − j𝑧j − k𝑧k = 𝑧−e+ +𝑧+e− . (G-8)

Both of these complex conjugations also change the sign of k and

thus exchange the idempotent basis elements (G-3).
By combining the complex conjugations (G-7) and (G-8), a third

method for complex conjugation— the bi-complex conjugation—

can be constructed,

𝑧
∗
= 𝑧1 − i𝑧i − j𝑧j + k𝑧k = 𝑧+

∗
e+ +𝑧−

∗
e− .

G-3 Bi-complex exponential function

The exponential function can be defined via the limit of the sequence

e
𝑧
= lim
𝑛→∞

(1 +
𝑧

𝑛
)
𝑛
.

Because of the properties (G-4) and (G-5) of the idempotent rep-

resentation, the exponential function of a bi-complex number of

the form (G-6) is given by

e
𝑧
= lim
𝑛→∞

[(1 +
𝑧+
𝑛
)e+ + (1 +

𝑧−
𝑛
)e−]

𝑛

= lim
𝑛→∞

(1 +
𝑧+
𝑛
)
𝑛

e+ + lim
𝑛→∞

(1 +
𝑧−
𝑛
)
𝑛
e−

= e
𝑧+e+ + e

𝑧−e− . (G-9)

The same line of thought can be used to derive the bi-complex

representations of every function that can be written as a power

series.
1
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1
Stoke’s theorem is

used in the second

step with 𝐀 = ∇×𝐁.

2
The Lorenz gauge is

relativistically invari-

ant and is thus partic-

ularly suited for fast

changes of the fields,

which, for example,

occur for alternating

electric currents.

3
i.e. 𝐫

′
≈ const.

Inductances of wire loops H
H-1 The Neumann formula

The flux of a magnetic field 𝐁 through a surface 𝑆 is given by
1

𝜙 = ∫
𝑆

𝐁 ⋅ d𝐒 = ∫
𝜕𝑆

𝐀 ⋅ d𝐥 .

Here, 𝐀 is the retarded vector potential in the Lorenz gauge,
2

𝐀(𝐫) =
𝜇0
4𝜋
∫
𝑉

𝐉(𝐫′)

|𝐫 − 𝐫′|
d3𝐫′ ,

which is created by a current 𝐉 through a volume 𝑉. For a thin

element of wire of length 𝑙 the vector potential can be written as

𝐀(𝐫) ≈
𝜇0
4𝜋
∫
𝑙

𝐼(𝑙′) d𝑙′

|𝐫 − 𝐫′|
�̂�𝑙′ ,

where

𝐼(𝑙′)�̂�𝑙′ = ∫
𝑎

𝐉(𝐫′) d𝑎′

is the current through the small wire cross section
3
𝑎. Further, if

the current is isotropic along the wire, one finally finds

𝐀(𝐫) =
𝜇0𝐼

4𝜋
∫
𝑙

d𝑙′

|𝐫 − 𝐫′|
. (H-1)

Now, consider two thin wire loops which enclose the areas 𝐴1
and 𝐴2, respectively. The flux 𝜙12 through the secondary area 𝐴2
of the magnetic field 𝐁1 created by a current 𝐼1, which is flowing

through the primary wire loop, is given by Eq. (H-1); it can also be
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4
cf. Appendix H-3

5
cf. Fig. 10-5

expressed as

𝜙12 =𝑀12𝐼1 ,(H-2)

where

𝑀12 =
𝜇0
4𝜋
∫
𝜕𝐴1

∫
𝜕𝐴2

d𝐥1 ⋅ d𝐥2
∣𝐫1 − 𝐫2∣

(H-3)

is the mutual inductance between the two wire loops. Equation

(H-3) is called the Neumann formula. Since the dot product is

commutative, it is immediately clear that𝑀12 =𝑀21 ≡𝑀, i.e. the

coupling is symmetric; in fact, this is a demonstration of the reci-

procity theorem.

The reciprocity theorem states that the interchange of excitation

and response does not affect the result [330]. For example, the

magnetic flux (H-2) with the mutual inductance (H-3) is invariant
under the exchange of the two areas, i.e. it does not matter through

which boundary the current flows that causes the magnetic field.

Note that the definition (H-2) of the mutual inductance is com-

pletely analogous to the usual definition of the self-inductance
4
via

the voltage induced in the secondary wire loop by the current in

the primary wire loop, i.e. 𝑈12 = −𝑀12
̇𝐼12 = −�̇�12.

H-2 Mutual inductance

In the following, some explicit expressions of the mutual inductance

for different geometric arrangement of two wire loops
5
are given.

For this, the Neumann formula (H-3) with the line elements

d𝐥𝑘 =
⎛⎜⎜⎜⎜

⎝

−𝑅𝑘 sin𝜑𝑘
𝑅𝑘 cos𝜑𝑘

0

⎞⎟⎟⎟⎟

⎠

d𝑙𝑘(H-4)

for 𝑘 = 1,2 is used.
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First, consider two wire loops which are aligned in the 𝑥-𝑦 plane

and which are separated in the 𝑧 direction by the distance 𝑑, i.e.

𝐝 = (0, 0,𝑑)
⊺
.

With

𝐫1 =
⎛⎜⎜⎜⎜

⎝

𝑅1 cos𝜑1
𝑅1 sin𝜑1

0

⎞⎟⎟⎟⎟

⎠

, (H-5)

𝐫2 =
⎛⎜⎜⎜⎜

⎝

𝑅2 cos𝜑2
𝑅2 sin𝜑2

𝑑

⎞⎟⎟⎟⎟

⎠

,

where the origin is set to the centre of the primary loop, one finds

𝑀(𝑑) =
𝜇0
4𝜋

2𝜋

∫
𝜑1=0

2𝜋

∫
𝜑2=0

𝑅1𝑅2 cos(𝜑1 −𝜑2) d𝜑1 d𝜑2

√𝑅2
1
+𝑅2

2
− 2𝑅1𝑅2 cos(𝜑1 −𝜑2) + 𝑑

2
. (H-6)

a) Misalignment

Now, consider the same arrangement with an additional misalign-

ment in the 𝑥 direction, i.e.

𝐝 = (𝛿,0,𝑑)
⊺
.

Hence,

𝐫1 =
⎛⎜⎜⎜⎜

⎝

𝑅1 cos𝜑1
𝑅1 sin𝜑1

0

⎞⎟⎟⎟⎟

⎠

,

𝐫2 =
⎛⎜⎜⎜⎜

⎝

𝑅2 cos𝜑2 +𝛿

𝑅2 sin𝜑2
𝑑

⎞⎟⎟⎟⎟

⎠

.
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After a short calculation one finds

𝑀(𝑑,𝛿) =
𝜇0
4𝜋

2𝜋

∫
𝜑1=0

2𝜋

∫
𝜑2=0

𝑅1𝑅2 cos(𝜑1 −𝜑2) d𝜑1 d𝜑2

√𝑅2
1
+𝑅2

2
− 2𝑅1𝑅2 cos(𝜑1 −𝜑2) + 𝑑

2 +𝜇(𝛿)
,

which equals Eq. (H-6) up to the additional term

𝜇(𝛿) = 𝛿(𝛿 − 2𝑅1 cos𝜑1 +𝑅2 cos𝜑2) .

b) Rotation

Last but not least, the case is considered in which the two loops

are not aligned parallel to one another. For this, a rotation of the

secondary loop around its 𝑥 axis is introduced via the rotation

matrix

𝑅𝑥 =
⎛⎜⎜⎜⎜

⎝

1 0 0

0 cos𝜗 −sin𝜗

0 sin𝜗 cos𝜗

⎞⎟⎟⎟⎟

⎠

.

Then,

𝐫1 =
⎛⎜⎜⎜⎜

⎝

𝑅1 cos𝜑1
𝑅1 sin𝜑1

0

⎞⎟⎟⎟⎟

⎠

,

𝐫2 = 𝑅𝑥
⎛⎜⎜⎜⎜

⎝

𝑅2 cos𝜑2
𝑅2 sin𝜑2

𝑑

⎞⎟⎟⎟⎟

⎠

=
⎛⎜⎜⎜⎜

⎝

𝑅2 cos𝜑2
𝑅2 sin𝜑2 cos𝜗

𝑑+𝑅2 sin𝜑2 sin𝜗

⎞⎟⎟⎟⎟

⎠

.

In this case also the line element for the secondary loop must be

rotated accordingly, i.e.

d𝐥2 = 𝑅𝑥
⎛⎜⎜⎜⎜

⎝

−𝑅2 sin𝜑2
𝑅2 cos𝜑2

0

⎞⎟⎟⎟⎟

⎠

d𝑙2 =
⎛⎜⎜⎜⎜

⎝

−𝑅2 sin𝜑2
𝑅2 cos𝜑2 cos𝜗

𝑅2 cos𝜑2 sin𝜗

⎞⎟⎟⎟⎟

⎠

d𝑙2 .
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Therefore, the mutual inductance reads

𝑀(𝑑,𝜗) =
𝜇0
4𝜋

2𝜋

∫
𝜑1=0

2𝜋

∫
𝜑2=0

𝑅1𝑅2 d𝜑1 d𝜑2
√𝜇(𝑑,𝜗)

(sin𝜑1 sin𝜑2 + cos𝜑1 cos𝜑2 cos𝜗) ,

where

𝜇(𝑑,𝜗) = (𝑅1 cos𝜑1−𝑅1 cos𝜑2)
2
+(𝑅1 sin𝜑1−𝑅2 sin𝜑2 cos𝜗)

2
+(𝑑+𝑅2 sin𝜑2 sin𝜗)

2
.

H-3 Self-inductance

In principle, the self-inductance of a wire loop should be equal

to the mutual inductance of two identical wire loops at distance

𝑑 = 0; hence, it should be calculable via the Neumann formula

(10-21). However, for 𝐫1 = 𝐫2 the integrand diverges, so that the

calculation is not straightforward unfortunately. However, the

Neumann formula can be used by dividing the integral into two

different parts,

𝐿 =
𝜇0
4𝜋
∫
𝜕𝐴

∫
𝜕𝐴

d𝐥 ⋅ d𝐥′

|𝐫 − 𝐫′|

∣
∣
∣
∣|𝐫−𝐫′|>𝜖

+
𝜇0
4𝜋
∫
𝜕𝐴

∫
𝜕𝐴

d𝐥 ⋅ d𝐥′

|𝐫 − 𝐫′|

∣
∣
∣
∣|𝐫−𝐫′|<𝜖

,

where 𝜖 is small compared to the radii of the wire loops. The

second term, which contains all divergences, can be replaced by

the inductances of straight wire segments [331], which yields

∫
𝜕𝐴

∫
𝜕𝐴

d𝐥 ⋅ d𝐥′

|𝐫 − 𝐫′|

∣
∣
∣
∣|𝐫−𝐫′|<𝜖

≈
𝐿

2
,

where the current is assumed to be equally distributed throughout

the wire.
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Alternatively, the self-inductance of a wire loop with a finite wire

radius 𝜌 can also be calculated via the Biot–Savart law

𝐁(𝐫) =
𝜇0𝐼

4𝜋
∫
𝜕𝐴

d𝐥′ × (𝐫 − 𝐫′)

|𝐫 − 𝐫′|3
.(H-7)

The line element d𝐥
′
and the vector 𝐫

′
are of the forms (H-4) and

(H-5), respectively. It can be shown that the magnetic flux is given

by

𝜙 = ∫
𝐴

𝐁 ⋅ d𝐀 = 𝜇0𝐼𝑅

𝜋

∫
𝜑=0

𝑅−𝜌

∫
𝑟=0

(𝑅 − 𝑟cos𝜑)𝑟d𝑟d𝜑

𝑅2 + 𝑟2 − 2𝑅𝑟cos𝜑

≙ 𝜇0𝐼𝑅(𝑅−𝜌)

𝜋

∫
𝜑=0

cos𝜑d𝜑

√𝑅2 + (𝑅−𝜌)2 − 2𝑅(𝑅−𝜌)cos𝜑
,(H-8)

where the last term describes just the magnetic flux over the area

of the wire loop [332]. Though, this integral is elliptic and cannot

be evaluated directly. Yet, by rewriting Eq. (H-8) as

𝜙 =
𝜇0𝐼

2
√𝑅(𝑅−𝜌)𝑚2

𝜋

∫
𝜑=0

cos𝜑d𝜑

√1 − 𝑚2

2 (cos𝜑 + 1)

with𝑚
2
= 4𝑅(𝑅−𝜌)/(2𝑅−𝜌)

2
and by using a change of the variable

𝜑 = 𝜋− 2𝜗, one finds

𝜙 = 𝜇0𝐼√𝑅(𝑅−𝜌)[(
2

𝑚
−𝑚)𝐾(𝑚) −

2

𝑚
𝐸(𝑚)]

with the complete elliptic integrals of the first and second kind

𝐾(𝑚) =

𝜋/2

∫
0

d𝜗

√1 −𝑚2 sin2𝜗
,

𝐸(𝑚) =

𝜋/2

∫
0

√1 −𝑚2 sin2𝜗d𝜗 .
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For 𝜌 ≪ 𝑅 the factor 𝑚 can be approximated by 𝑚 ≈ 1, which

implies 𝐸(𝑚 ≈ 1) ≈ 1 and

𝐾(𝑚 ≈ 1) ≈ ln(
8𝑅

𝜌
− 4) .

The self-inductance 𝐿 and the magnetic flux 𝜙 are related by

Faraday’s induction law 𝑈ind = −𝐿 ̇𝐼 = −�̇�. Thus,

𝐿 =
𝜙

𝐼
≈ 𝜇0𝑅[ln(

8𝑅

𝜌
− 4) − 2] .

Further, since 𝑅/𝜌 ≫ 1, the last term in the logarithm can be

omitted, which yields the well-known expression

𝐿 = 𝜇0𝑅(ln
8𝑅

𝜌
− 2)

for the self-inductance of a thin wire loop with radius 𝑅 and wire

radius 𝜌.
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Glossaries

Acronyms

BdGE Bogoliubov–de Gennes equations

BEC Bose–Einstein condensate

ED electrodynamics

EP exceptional point

GPE Gross–Pitaevskii equation

NHQM non-Hermitian quantum mechanics

NLSE non-linear Schrödinger equation

QM quantum mechanics

SUSY supersymmetry

WPT wireless power transfer

Abbreviations

cf. confer meaning “compare”

e.g. exempli gratia meaning “for example”

et al. et alii meaning “and others”

etc. et cetera meaning “and so forth”

i.e. id est meaning “that is to say”

vs. versus meaning “against”

Foreign terms

a priori meaning “from the start”

per se meaning “by itself”

vice versa meaning “in reverse”
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1
vgl. Abschnitt 2-3 b)

2
vgl. Abschnitt 2-4

3
In der Quantenme-

chanik lässt sich Zeit-

umkehr sogar gänz-

lich über die komple-

xe Konjugation defi-

nieren.

4
vgl. Abschnitt 2-2 b)

Zusammenfassung in

deutscher Sprache

In dieser Arbeit werden Konzepte untersucht und diskutiert, mit

denen sich ausgeglichene Gewinne und Verluste in unterschiedli-

chen Systemen erzeugen lassen. Über Gewinn und Verlust können

die Wechselwirkungen eines Systems mit seiner Umgebung auf

elegante und effiziente Art und Weise beschrieben werden; sind

diese ausgeglichen, so treten stationäre Zustände auf.

Kapitel 2 gibt zuerst einen Überblick über verschiedene Symme-

trien innerhalb der Physik und deren Bedeutung. Zur mathemati-

schen Beschreibung von Symmetrien dient die Gruppentheorie.

Eine der fundamentalsten und wichtigsten Gruppen in der Physik

ist die Lorentz-Gruppe, welche alle Symmetrietransformationen

der vierdimensionalen Raumzeit enthält. Diese Lorentz-Transfor-

mationen lassen sich in vier Kategorien einteilen, die in Tabelle 2-1
zusammengefasst sind. Wichtig sind hierbei die Operatoren 𝒫, 𝒯

und 𝒞, die Paritäts-, Zeit- und Ladungsumkehr beschreiben; ihre

Kombination bildet gemäß des 𝒞𝒫𝒯-Theorems
1
die fundamentalste

Symmetrieoperation, unter der alle bekannten physikalischen Theo-

rien invariant sind. Die Zeitumkehr ist nochmals ausgezeichnet, da

es sich hierbei um eine antilineare Operation handelt, die sich von

einer linearen Operation durch eine zusätzliche komplexe Konjuga-

tion unterscheidet.
2
Das ist insbesondere in der Quantenmechanik

wichtig, da diese über einen komplexen Hilbert-Raum definiert ist.
3

Dabei ist zu beachten, dass Zeitumkehr die Umkehr aller Bewe-

gungen und Trajektorien meint und nicht lediglich die Umkehr der

Zeitkoordinate der Raumzeit, was ausführlich in Abschnitt 2-3 a)
diskutiert wird.

Aus den verschiedenen Darstellungen der Lorentz-Gruppe
4
las-

sen sich im Prinzip die Theorien der modernen Physik herleiten.

So folgt etwa die Schrödinger-Gleichung (2-38) in der Quanten-

mechanik, abgesehen von dem Faktor ℏ, formal aus der Dirac-
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5
vgl. Abschnitt 4-1

6
vgl. Abschnitt 4-6

7
vgl. Abschnitt 4-5

8
vgl. Abschnitt 4-2 b)

Gleichung (2-22). Die Maxwell-Gleichungen (2-29) bis (2-32) in der

Elektrodynamik hingegen ergeben sich aus der Proca-Gleichung

(2-24). Diese Arbeit ist thematisch auch entsprechend dieser beiden

Theorien geteilt.

Teil 1: Quantensysteme

Im ersten Teil der Arbeit wird Gewinn und Verlust in der Quanten-

mechanik eingeführt. Üblicherweise beschreibt die Quantentheorie

lediglich abgeschlossene Systeme mithilfe Hermitescher Operato-

ren,
5
deren Eigenwerte reell und damit physikalisch interpretierbar

sind. Jedoch lassen sich Wechselwirkungen zwischen einem offenen

System und seiner Umgebung auf einfache Weise als Gewinne oder

Verluste durch die Einführung eines imaginären Potentials beschrei-

ben, wodurch der zugehörige Hamilton-Operator jedoch nicht mehr

Hermitesch ist;
6
solche Operatoren sind im Allgemeinen dann kom-

plex symmetrisch.
7
Diese nicht-Hermitesche Quantentheorie wird

in Kapitel 4 beschrieben und unterscheidet sich deutlich von der

üblichen, Hermiteschen Quantenmechanik. Der Imaginärteil𝑉i des

Potentials führt zu einer Veränderung der Kontinuitätsgleichung für

die Wahrscheinlichkeitsdichte 𝜌 und den Wahrscheinlichkeitsstrom

𝑗,

d𝜌

d𝑡
+∇𝑗 = 2𝑉i𝜌 .(4-6)

Für 𝑉i ≠ 0 ist die Wahrscheinlichkeit der Zustände im Allgemei-

nen nicht mehr erhalten und die zugehörigen Energieeigenwerte

sind in diesem Fall komplex.
8
Diese können ähnlich wie ein kom-

plexer Brechungsindex in der Optik als effektive mathematische

Beschreibung der Wechselwirkung mit der Umgebung interpretiert

werden. Jedoch besitzen nicht-Hermitesche Operatoren eine unüb-

liche mathematische Struktur, welche zu einigen verblüffenden

Eigenschaften führt.

Im Gegensatz zu Hermiteschen Operatoren sind die Eigenzustän-

de eines nicht-Hermiteschen Operatorsℋ nicht mehr orthogonal

zueinander. Stattdessen bilden die Zustände eine biorthogonale
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9
Die spezifische No-

tation für links- und

rechtsseitige Zustän-

de ist in Anhang A-2
beschrieben.

10
vgl. Abschnitt 4-3 b)

11
vgl. Abschnitt 4-3 a)

12
vgl. Abschnitt 2-1 c)

Basis mit der Eigenschaft

⟨𝜓
𝑚
∣𝜓𝑛⟩ = 𝛿𝑛𝑚 , (4-14)

wobei |𝜓𝑛⟩ eine Lösung der rechtsseitigen Eigenwertgleichung

ℋ∣𝜓𝑛⟩ = 𝐸𝑛 ∣𝜓𝑛⟩ (4-10)

und |𝜓
𝑛
⟩ eine Lösung der linksseitigen Eigenwertgleichung

⟨𝜓
𝑛
∣ℋ = ⟨𝜓

𝑛
∣𝐸𝑛 (4-11)

ist.
9
Für einen Hermiteschen Operatorℋ=ℋ

†
mit reellen Eigen-

werten 𝐸𝑛 ∈ ℝ sind Gln. (4-10) und (4-11) äquivalent, sodass die
links- und rechtsseitigen Zustände gleich und damit orthogonal

sind. Damit ist die Biorthogonalität eine direkte Verallgemeine-

rung der Orthogonalität. Für 𝐸𝑛 ∈ ℂ entspricht die linksseitige

Eigenwertgleichung (4-11) dem Adjungierten der rechtsseitigen

Eigenwertgleichung (4-10) mit dem Operatorℋ
†
und dem komplex

konjugierten Spektrum, bestehend aus den Eigenwerten 𝐸
∗
𝑛 .

In nicht-Hermiteschen Quantensystemen kann es zur gleichzeiti-

gen Entartung von Eigenwerten und Eigenzuständen kommen. Da

die Biorthogonalität (4-14) erhalten bleibt, sind solche Zustände

formal orthogonal zu sich selbst und nicht mehr normierbar.
10

Dieses Phänomen der Selbstorthogonalität
11

ist ausschließlich

in nicht-Hermiteschen Systemen an sogenannten exzeptionellen

Punkten zu finden, an denen eine spontane Symmetriebrechung

auftritt. Bei der Umkreisung eines exzeptionellen Punktes werden

die Eigenwerte vertauscht. Es bedarf mehrerer Umkreisungen

um die Ausgangssituation wieder herzustellen. Dieses Phänomen

entsteht durch die einzigartige Topologie der Eigenwertlösungen

eines nicht-Hermiteschen Operators in der komplexen Ebene um

den exzeptionellen Punkt; diese liegen auf unterschiedlichen Rie-

mann-Blättern, was in Abb. 4-1 für zwei Eigenwerte skizziert ist.
Abschnitt 4-3 a) enthält auch eine einfache Modellrechnung, um

dieses Phänomen explizit zu zeigen.

Durch das Noether-Theorem
12

sind Symmetrien üblicherwei-

se mit dem Auftreten von Erhaltungsgrößen verbunden. Das gilt
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13
vgl. Abschnitt 2-1 b)

14
vgl. Gl. (4-6)

15
vgl. Abschnitt 5-3 a)

jedoch nur für kontinuierliche Symmetrien, die sich über infinite-

simale Transformationen beschreiben lassen und damit eine Lie-

Gruppe
13

bilden. Jedoch kann auch zwischen bestimmten diskreten

Symmetrien und der Erhaltung der Wahrscheinlichkeit in der nicht-

Hermiteschen Quantenmechanik ein Zusammenhang hergestellt

werden. In Kapitel 5 werden daher solche Symmetrien und andere

Konzepte besprochen, welche trotz der Anwesenheit eines komple-

xen Potentials
14

zu einer Erhaltung der Wahrscheinlichkeit in nicht-

Hermiteschen Quantensystemen führen. Das ist genau dann der

Fall, wenn der entsprechende Energieeigenwert reell ist. Reelle Ei-

genwerte treten als Spezialfälle in Anwesenheit einer antiunitären

Symmetrie auf,
15

was sich über die Symmetriebedingung

[𝒜,ℋ] = 0(5-24)

als Kommutator mit dem Hamilton-Operatorℋ fordern lässt. Hier-

bei ist 𝒜 ein antilinearer Operator, der mit dem physikalisch funda-

mentalsten antilinearen Operator 𝒯 für die Zeitumkehr verknüpft

ist.

Die wohl bekannteste Symmetrie in diesem Zusammenhang ist

die𝒫𝒯-Symmetrie mit𝒜 = 𝒫𝒯, welche ausführlich in Abschnitt 5-1
eingeführt wird. Die Wirkung des 𝒫𝒯-Operators entspricht einer

Spiegelung des Raums zusammen mit einer komplexen Konjugation,

𝒫𝒯 ∶ �̂� → −�̂� , i → −i .(5-2)

Durch Anwendung des 𝒫𝒯-Operators auf die Eigenwertgleichun-

gen (4-10) und (4-11) lässt sich zeigen, dass für jeden Eigenwert 𝐸𝑛
eines 𝒫𝒯-symmetrischen Hamilton-Operators, der Gl. (5-1) erfüllt,
auch 𝐸

∗
𝑛 ein Teil des Spektrums sein muss, sodass die Eigenwerte

in komplex konjugierten Paaren auftreten. Ist die 𝒫𝒯-Symmetrie

exakt, so sind die Eigenwerte sogar reell. Treffen sich zwei reelle

Eigenwerte, so können diese durch spontane Brechung der 𝒫𝒯-

Symmetrie an einem exzeptionellen Punkt in ein Paar komplex

konjugierter Eigenwerte aufspalten. Diese Eigenschaften bleiben

auch bei anderen antiunitären Symmetrien erhalten, die einer

Verallgemeinerung des 𝒫𝒯-Operators entsprechen. Jedoch besticht

gerade die 𝒫𝒯-Symmetrie durch ihre Einfachheit; 𝒫𝒯-symmetri-
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16
vgl. Gl. (5-3)

17
vgl. Abschnitt 2-5 d)

18
vgl. Abschnitt 5-2

19
vgl. Abb. 2-7 und

2-9

20
im Folgenden kurz

als „komplex konju-

giertes Spektrum“ be-

zeichnet

21
vgl. Abschnitt 4-4 a)

22
vgl. Abschnitt 4-4

23
vgl. Abschnitt 5-3 d)

sche, komplexe Potentiale besitzen etwa stets einen symmetrischen

Realteil und einen antisymmetrischen Imaginärteil
16

bezüglich des

Ortes �̂�.

Eine weitere bekannte Symmetrie ist die Supersymmetrie, deren

Grundlagen in Abschnitt 2-5 beschrieben werden. Üblicherweise be-
zeichnet sie die Symmetrie zwischen Bosonen und Fermionen und

findet somit Anwendung in der Quantenfeldtheorie. Jedoch lässt

sich Supersymmetrie auch auf die Quantenmechanik
17

und insbe-

sondere auf die nicht-Hermitesche Quantenmechanik
18

anwenden.

In nicht-Hermiteschen Systemen können die links- und die rechts-

seitigen, biorthogonalen Zustände als bosonische und fermionische

Zustände mit einer gebrochenen Supersymmetrie interpretiert

werden.
19

Auch in diesem Fall besteht das Spektrum des Hamilton-

Operators aus reellen und Paaren zueinander komplex konjugierter

Eigenwerte.
20

Die Zustände, die zum selben reellen Energieeigen-

wert gehören, lassen sich durch die Symmetrisierungsoperatoren

(5-37) und (5-38), welche die Beziehungen

ℋ𝑆 = 𝑆ℋ
†
, (5-14)

𝑆ℋ =ℋ
†
𝑆 (5-15)

erfüllen, ineinander überführen. Im Allgemeinen werden jedoch

jeweils die Zustände zu den zueinander komplex konjugierten

Eigenwerten durch die Symmetrisierungsoperatoren (5-43) und
(5-44) ineinander überführt. Sind die Symmetrisierungsoperatoren

zusätzlich noch invertierbar und invers zueinander, so lassen sich

Gln. (5-14) und (5-15) schreiben als

𝑆ℋ
†
𝑆 =ℋ, (5-30)

was eine Verallgemeinerung der Hermitezitätsbedingung dar-

stellt.
21

Die Symmetrisierungsoperatoren stellen hierbei eine Me-

trik dar.
22

Gleichungen (5-14), (5-15) und (5-24) sind miteinander ver-

knüpft.
23

Jedoch stellen die Bedingungen (5-14) und (5-15) keine
Symmetriebedingungen dar, wodurch der Hamilton-Operator keine

offensichtlichen Symmetrien aufweisen muss; daher wird dieses

Konzept in dieser Arbeit als „Symmetrisierung“ bezeichnet und
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24
vgl. Abschnitt 5-3 c)

25
Die übrigen Eigen-

werte sind hierbei iso-

liert komplex.

26
vgl. Abschnitt 5-5

27
vgl. Abschnitt 5-2 b)

ist in Abschnitt 5-3 beschrieben. Sowohl im Fall eines symmetri-

schen als auch eines symmetrisierten Quantensystems sind die

Koeffizienten des charakteristischen Polynoms reell,
24

was eine not-

wendige Bedingung für das Auftreten eines komplex konjugierten

Spektrums ist. Jedoch lassen sich die Symmetrisierungsbedingun-

gen (5-14) und (5-15) auch dann anwenden, wenn nur ein Teil des

Spektrums komplex konjugiert ist.
25

Umgekehrt lassen sich damit

etwa nicht-Hermitesche Systeme finden, die reelle Eigenwerte und

damit ausgeglichenen Gewinn und Verlust aufweisen. Die Symme-

trisierungsoperatoren sind in diesem Fall nicht mehr invertierbar

und nur noch semiinvers zueinander; entsprechend wird diese

Verallgemeinerung der Symmetrisierung als Semisymmetrisierung

bezeichnet und in Abschnitt 5-4 anhand eines einfachen Beispiels

besprochen.

Die Konzepte der 𝒫𝒯-Symmetrie sowie der Symmetrisierung

und Semisymmetrisierung werden in Kapitel 6 auf lineare, ein-

dimensionale Mehrmuldenpotentiale mit lokalisierten Gewinnen

und Verlusten, wie in Abb. 6-1 dargestellt, angewandt. Hierbei

zeigt sich, dass Symmetrisierung als eine eigenständige Methode

angesehen werden kann. Lokalisierte Gewinne und Verluste kön-

nen nicht mithilfe der Symmetrisierungsoperatoren aus der nicht-

Hermiteschen Supersymmetrie beschrieben werden,
26

welche not-

wendigerweise durch Differentialoperatoren gegeben sind.
27

Im

einfachsten Fall kann ein Zweimuldenpotential mit dem diskreten,

komplex symmetrischen Hamilton-Operator

ℋ= ⎛⎜
⎝

𝜖1 + i𝛾1 −𝐽

−𝐽 𝜖2 + i𝛾2

⎞⎟
⎠

(6-9)

beschrieben werden; für 𝜖1 = 𝜖2 und 𝛾1 = −𝛾2 ist dieser 𝒫𝒯-

symmetrisch. Abbildung 6-2 zeigt ein typisches Spektrum eines

𝒫𝒯-symmetrischen Systems, in dem alle Eigenwerte reell sind,

solange die 𝒫𝒯-Symmetrie für geringere Gewinne und Verluste

ungebrochen ist. Jedoch lassen sich auch abseits der𝒫𝒯-Symmetrie

reelle Eigenwerte finden, wenn folgender Zusammenhang gilt,

𝜖1 − 𝜖2 = ±(𝛾1 + 𝛾2)√−
𝐽2

𝛾1𝛾2
− 1 .(6-16)
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28
vgl. Anhang G

29
vgl. Abb. 6-4 und

6-7

30
vgl. Abb. 6-9

Die 𝒫𝒯-symmetrischen Systeme sind hierbei ein Spezialfall dieser

Zweimodensysteme, die, wie in Abb. 6-3 und 6-4 gezeigt, semisym-

metrisiert sind, sodass nur jeweils ein reeller und ein komplexer

Eigenwert auftreten. Tatsächlich zeigt sich, dass ein Zweimoden-

system der Form (6-9) nur dann zwei reelle Eigenwerte besitzen

kann, wenn der Hamilton-Operator (6-9) Hermitesch oder 𝒫𝒯-sym-

metrisch ist. Das kann auf die geringe Anzahl an freien Parametern

zurückgeführt werden und tritt bei Drei- und Mehrmodensystemen

nicht mehr auf.

Darüber hinaus lassen sich solche Systeme nicht für alle Pa-

rameterkombinationen symmetrisieren, da sich die Symmetrisie-

rungsbedingungen nicht mehr erfüllen lassen, sodass Gl. (6-16)
keine reellen Werte mehr liefert. Diese Bereiche sind in Abb. 6-3
und 6-4 schraffiert dargestellt und lassen sich in zwei Kategorien

einteilen:

1) Sowohl Gewinn als auch Verlust müssen auftreten und sich aus-

gleichen. Daher müssen 𝛾1 und 𝛾2 unterschiedliche Vorzeichen

haben.

2) Werden Gewinn und Verlust zu groß, so kommt es zu einer

Brechung der Symmetrisierung.

Mithilfe bikomplexer Zahlen
28

lässt sich zeigen, dass auch in diesen

Fällen symmetrisierte Lösungen existieren, welche die physikali-

schen Lösungen analytisch fortsetzen. Das ist gut ersichtlich bei

einem Vergleich der Abbildungen 6-3, 6-5 und 6-6. Hierbei zeigt
sich nochmals ein deutlicher Unterschied zwischen den oben be-

sprochenen Kategorien: Während sich die bikomplexen Lösungen

im Falle der Brechung der Symmetrisierung stetig an die physi-

kalischen Lösungen anschließen, so treten Unstetigkeiten in den

Bereichen auf, in denen nur Gewinne oder nur Verluste vorliegen.

Auf ähnliche Art und Weise lassen sich auch Mehrmodensysteme

beschreiben. In Abb. 6-7 sind die Bereiche des Parameterraums

dargestellt, in denen symmetrisierte Dreimodensysteme der Form

(6-22) existieren. Im Gegensatz zum Zweimodensystem sind diese

Bereiche jedoch vollkommen getrennt von den 𝒫𝒯-symmetrischen

Lösungen.
29

Jedoch ergibt sich auch hierbei als Spezialfall eine

Symmetrie, die Anti-𝒫𝒯-Symmetrie.
30

Außerdem treten in den
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31
vgl. Abb. 4-1

32
vgl. Abb. 6-8

33
vgl. Abschnitt 7-4 a)

34
vgl. Abschnitt 7-1 a)

symmetrisierten Dreimodensystemen auch jeweils exzeptionelle

Punkte zwischen dem Grundzustand und dem ersten angeregten

Zustand sowie zwischen den beiden angeregten Zuständen auf.

Hierbei handelt es sich um exzeptionelle Punkte zweiter Ordnung,
31

die im Parameterraum eine zusammenlaufen und einen exzeptio-

nellen Punkt dritter Ordnung bilden.
32

Hierbei entsteht die Form

einer Spitze, in deren Bereich drei reelle Eigenwerte auftreten,

wohingegen außerhalb nur ein Eigenwert reell ist und die übrigen

beiden zueinander komplex konjugiert sind.

Eine besondere Art von Mehrmodensystemen wird in Abschnitt

6-2 untersucht, in dem nur die äußeren Mulden Gewinn und Verlust

erfahren. Die Parameter dieser Mulden werden gemäß Gln. (6-32)
bis (6-34) gewählt, was dem Rand in Abb. 6-4 entspricht, an dem

die Symmetrisierung gebrochen wird. Die inneren Mulden sind

hingegen alle identisch gemäß Gl. (6-31). Das Spektrum eines

solchen Mehrmuldenpotentials ist in Abb. 6-10 dargestellt. Die

besondere Eigenschaft besteht hierbei darin, dass die Eigenwerte

bis auf einen Zustand reell sind. Dies gilt unabhängig von der

Anzahl der inneren Mulden. Solche Systeme eignen sich daher

zur Realisierung von Transportketten, bei denen etwa Teilchen

am einen Ende ein- und am anderen Ende ausgekoppelt werden,

sodass ein konstanter Strom entsteht, der den Gewinn und den

Verlust ausgleicht.

Neben linearen Quantensystemen werden in dieser Arbeit in

Kapitel 7 auch nichtlineare Systeme mit einem zusätzlichen Term

der Form

𝑓(𝜓) ∝ ∣𝜓∣
2
= ⟨𝜓∣𝜓⟩(7-2)

untersucht. Der zugehörige Hamilton-Operatorℋ(𝜓) hängt damit

vom Zustand des Systems ab. Die Eigenwerte und Eigenzustände

eines solchen Operators müssen über eine nichtlineare Eigenwert-

gleichung bestimmt werden, deren Lösung nur in Ausnahmefällen

analytisch möglich ist
33

und in der Regel über numerische Ver-

fahren erfolgen muss.
34

Da solche Systeme nicht mehr durch die

lineare Algebra beschrieben werden können, ist im Voraus auch

nicht klar, wie viele Lösungen ein nichtlineares System besitzt. In

einem 𝒫𝒯-symmetrischen, nichtlinearen Zweimodensystem der
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35
vgl. Abschnitt 7-3

36
vgl. Abschnitt 7-4 a)

37
vgl. Abschnitt 7-4 b)

38
vgl. Abschnitt 7-2

39
vgl. Abschnitt 7-2 a)

40
Strenggenommen

ist so eine Stabilitäts-

betrachtung nur für

stationäre Lösungen

sinnvoll.

Form (7-31) treten für bestimmte Parameter beispielsweise bis zu

vier Lösungen auf, wie in Abb. 7-3 zu sehen ist. All das erschwert die
Beschreibung solcher Systeme und insbesondere auch die Anwen-

dung von Konzepten wie der Symmetrisierung.
35

Daher beschäftigt

sich Kapitel 7 nur mit der Untersuchung reeller Energieeigenwer-

te, was in der Regel einem symmetrischen, symmetrisierten oder

semisymmetrisierten System entspricht.

Während die reellen Lösungen eines 𝒫𝒯-symmetrischen Zwei-

modensystems in einem nichtlinearen System,
36

wie in Abb. 7-3
gezeigt, praktisch unverändert über einen breiten Parameterbe-

reich auftreten, so sind reelle Lösungen eines asymmetrischen,

nichtlinearen Systems
37

nur noch vereinzelt zu finden. Abbildung

7-6 zeigt, dass stationäre Zustände auch für einen Hamilton-Ope-

rator der Form (7-30) und für unterschiedliche Stärken der nicht-

linearen Terme auftreten. Jedoch muss hierbei die Stabilität der

Lösungen beachtet werden. Stationäre Lösungen nichtlinearer

Gleichungen müssen nicht zwangsläufig auch zeitlich stabil ge-

genüber von Störungen sein.
38

Falls, wie in Abb. 7-1 dargestellt,
eine rücktreibende „Kraft“ das System bei einer Störung zurück

in den stationären Zustand bringt, ist der Zustand stabil. Ist der

Zustand jedoch instabil wie in Abb. 7-2, so entfernt sich das System
bei einer Störung bereits zunehmend vom stationären Zustand.

Durch Linearisierung kann die lineare Stabilität eines dynamischen

Systems gegenüber kleiner Störungen bestimmt werden.
39

Für

ein nicht-Hermitesches Quantensystem mit einem Term der Form

(7-2) müssen hierbei simultane Störungen der links- und rechts-

seitigen Eigenzustände betrachtet werden, welche sich über den

Zustandsvektor 𝜙 = (𝜓,𝜓)
⊺
beschreiben lassen,

𝛿𝜙(𝑡) = e
−i𝐽(𝜙0)𝑡𝛿𝜙(0) . (7-14)

Die Jacobi-Matrix 𝐽 ist über Gl. (7-15) definiert und ihre Eigenwer-

te bestimmen die Stabilität des Systems; sind alle Imaginärteile

negativ, so ist der Zustand stabil.

In Abb. 7-7 sind die Stabilitätseigenwerte der Jacobi-Matrix

für Lösungen des Zweimodensystems dargestellt. Es lässt sich

erkennen, dass es ausgedehnte Parameterbereiche für 𝛾 gibt, in

denen die Lösungen des nichtlinearen Systems stabil sind.
40

Die
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41
vgl. Abschnitt 7-5

42
vgl. Kapitel 8

43
z.B. Gl. (6-16)

44
vgl. Abschnitt 8-1

45
vgl. Abschnitt 8-2

46
vgl. Anhang E

stationären Lösungen 𝛾s fallen in einen dieser Bereiche, falls die

Stärke 𝑔 der nichtlinearen Terme nicht zu groß ist. Jedoch zeigt sich

hierbei noch eine weitere Eigenschaft: Das Betragsquadrat |𝜓|
2
der

Wellenfunktion, das bei 𝛾s erhalten bleibt, nimmt für 𝛾 > 𝛾s zu und

für 𝛾 < 𝛾s ab. Gleichzeitig verschiebt sich die Position 𝛾s einer sta-

tionären Lösung mit 𝑔 zu größeren Werten hin. Da die nichtlinearen

Terme in Gl. (7-30) dem Produkt dieser beiden Größen entsprechen,

also 𝑔|𝜓|
2
, ergibt sich eine zusätzliche Selbststabilisierungswir-

kung. Wird das System gestört und aus seinem stationären Zustand

gebracht, dann verändern die nichtlinearen Terme den Hamilton-

Operator so, dass sich das System wieder in einem stationären

Zustand befindet. Wie in Abb. 7-11 gezeigt, lassen sich ähnliche

Szenarien auch in asymmetrischen Dreimodensystemen finden.
41

Dieser Selbststabilisierungsmechanismus nichtlinearer Syste-

me könnte insbesondere in Experimenten von Interesse sein. Das

exakte Einstellen und Aufrechterhalten der Parameter eines 𝒫𝒯-

symmetrischen Systems stellt beispielsweise eine experimentelle

Herausforderung dar, insbesondere, wenn Gewinn und Verlust

aufgrund ihrer Realisierung von Natur aus unsymmetrisch sind.
42

Das betrifft jedoch auch symmetrisierte Systeme, die ebenfalls

auf die exakte Einhaltung von Relationen
43

zwischen den Parame-

tern angewiesen sind. Durch Verwendung eines entsprechenden

nichtlinearen Systems lassen sich diese Probleme vermeiden, was

etwa die experimentelle Realisierung solcher Zustände in Bose–

Einstein-Kondensaten ermöglichen könnte. Der nichtlineare Term

(7-2) beschreibt dabei die Kontaktwechselwirkungen zwischen den

Kondensatteilchen, deren Stärke sich über Feshbach-Resonanzen

beliebig einstellen lässt. Für Bose–Einstein-Kondensate lassen sich

sowohl echte
44

als auch effektive
45

Gewinne und Verluste erzeugen.

Effektiv offene Mehrmuldenpotentiale lassen sich, wie in Abb. 8-1
dargestellt, durch Einbettung in eine Optische Kette realisieren.

Die in dieser Arbeit untersuchten Matrixmodelle sind aber nur eine

Näherung realistischer Mehrmuldenpotentiale.
46

Jedoch werden

in Abschnitt 6-4 auch räumlich ausgedehnte Potentiale aus Gauß-

Funktionen untersucht und gezeigt, dass die Modellrechnungen

eine gute Näherung realistischer Potentiale mit entsprechenden

Parametern darstellen.
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47
vgl. Kapitel 8

48
vgl. Abb. 10-1

49
vgl. Abschnitt 10-1

50
vgl. Abschnitt 10-3

51
vgl. Abschnitt 10-2

52
vgl. Abschnitt 10-3 a)

Teil 2: Elektromagnetische Systeme

Die Realisierung von Symmetrien und symmetrisierter Quantensys-

teme ist schwierig,
47

was man etwa daran erkennen kann, dass

𝒫𝒯-Symmetrie vor seiner Realisierung in einem Quantensystem

zuerst in verschiedenen anderen, wellenmechanischen Systemen

experimentell beobachtet wurde. Das ist möglich, da viele Systeme

mathematisch äquivalent zur Schrödinger-Gleichung mit Gewinn

und Verlust beschrieben werden können. Ein Beispiel hierfür sind

magnetisch gekoppelte, elektrische Schwingkreise, die in Kapi-

tel 10 besprochen werden und eine einfache und zugängliche Basis

für die Realisierung von Symmetrien und Symmetrisierung zur

Erzeugung von ausgeglichenem Gewinn und Verlust bieten.

Strom und Spannung in einem elektrischen Schwingkreis, im

einfachsten Fall bestehend aus einer Spule und einem Konden-

sator,
48

werden jeweils durch eine Differentialgleichung zweiter

Ordnung beschrieben; für die Spannung gilt beispielsweise

d
2
𝑈

d𝑡2
+𝜔

2
0𝑈 = 0 (10-3)

mit der Resonanzfrequenz 𝜔0. Durch geschickte Kombination von

Strom und Spannung lässt sich ein Schwingkreis jedoch auch als

ein Einmodensystem schreiben,
49

d𝑎

d𝑡
= i𝜔0𝑎 , (10-10)

wobei |𝑎|
2
der im Schwingkreis gespeicherten Energie entspricht.

Gewinn
50

und Verlust
51

lassen sich entsprechend in diese Beschrei-

bung einführen. Während Verluste durch die Anwesenheit eines

Verbrauchers entstehen und sich einfach über deren Widerstände

charakterisieren lassen, erfordert die Erzeugung eines Gewinns

eine Koaxialleitung, über die eine einlaufende Welle in den Schwing-

kreis eingekoppelt wird. Die Koaxialleitung erzeugt gleichzeitig

einen Verlust, da ein Teil der eingekoppelten Energie als auslau-

fende Welle vom Schaltkreis reflektiert wird.
52

Die Effekte der

ein- und auslaufenden Wellen lassen sich als effektiver Gewinn
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53
vgl. Abschnitt 10-5 a)

54
vgl. Gl. (10-31)

55
vgl. Anhang H

56
Die Stärke des Ver-

lustes wird hier durch

𝛾2 > 0 beschrieben.

57
vgl. Abschnitt 11-1 b)

58
vgl. Abschnitt 11-2

zusammenfassen.
53

Mathematisch lässt sich das analog zum Verlust

über einen negativen Widerstand beschreiben, was jedoch eine

entsprechend angepasste einlaufende Welle erfordert.
54

Zwei Schwingkreise sind, wie in Abb. 10-4 skizziert, über ihre
Spulen magnetisch gekoppelt. Das Magnetfeld, das in einer Spule

entsteht, induziert einen Strom in der anderen Spule und umge-

kehrt. Die Beschreibung dieser Gegenseitigen Induktion erfolgt

analog zur Beschreibung der Selbstinduktion.
55

Die gekoppelten

Schwingkreise können dann über Gl. (10-29) als Zweimodensystem

mit der Kopplungskonstanten 𝜅 aus Gl. (10-28) beschrieben wer-

den. Die Stärke der Kopplung hängt dabei von der geometrischen

Anordnung der Spulen zueinander ab, wie in Abb. 10-5 und 10-6
gezeigt, und nimmt mit der Entfernung ab. Werden dann noch

Gewinn und Verlust eingeführt, so ergibt sich

−iℋ = ⎛⎜
⎝

i𝜔1 + 𝛾1 i𝜅

i𝜅 i𝜔2 − 𝛾2

⎞⎟
⎠
,(10-32)

was äquivalent zum Hamilton-Operator (6-9) mit den Resonanz-

frequenzen 𝜔1 = −𝜖1, 𝜔2 = −𝜖2 sowie 𝛾1 = 𝛾1 und 𝜅 = 𝐽 ist.
56

Hierbei sind 𝜔1 und 𝛾1 effektive Modellparameter, welche über die

einlaufende Welle frei eingestellt werden können. Damit lassen sich

alle oben diskutierten Methoden und Effekte für lineare, nicht-Her-

mitesche Quantensysteme direkt auf ein System aus gekoppelten

Schwingkreisen übertragen.

Neben der bloßen Realisierung der in dieser Arbeit besproche-

nen Symmetrien und Konzepten der Symmetrisierung, können

gekoppelte Schwingkreise mit Gewinn und Verlust, wie in Abb. 11-1
gezeigt, auch für die kabellose Übertragung von Energie verwen-

det werden. Auch hierbei ist der Ausgleich von Gewinnen und

Verlusten notwendig, um eine kontinuierliche und effiziente
57

En-

ergieübertragung zu gewährleisten. So zeigt Abb. 11-4 etwa, dass
der Wirkungsgrad (11-10) einer kabellosen Energieübertragung

optimal ist, solange der Hamilton-Operator (10-32) 𝒫𝒯-symme-

trisch ist.
58

Das gilt weitgehend unabhängig von der Entfernung

der gekoppelten Spulen, was üblicherweise eine aktive Anpassung

der Parameter der Schwingkreise erfordern würde. Dabei muss

beachtet werden, dass der Wirkungsgrad nicht nur von den Mo-
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59
vgl. Abschnitt 11-3

60
vgl. Abschnitt 10-5 b)

61
Das schließt deren

Existenz jedoch nicht

aus.

62
vgl. Abb. 11-8

dellparametern 𝜔1 und 𝛾1, sondern auch von den physikalischen

Parametern 𝜔1 und 𝛾1 abhängt, die von den elektrischen Kom-

ponenten des Schwingkreises bestimmt werden; liegen diese in

derselben Größenordnung, so liegt auch der Wirkungsgrad in der

Größenordnung Eins. Obwohl der Wirkungsgrad optimal ist, eignet

sich die strahlungslose Energieübertragung mithilfe magnetischer

Kopplungen nur für kurze bis mittlere Entfernungen. Für eine

kabellose Energieübertragung über Langstrecken muss Laser- oder

Mikrowellenstrahlung verwendet werden.

Abgesehen von der Optimierung der Energieübertragung lässt

sich auch ein Selbststabilisierungsmechanismus in unsymmetri-

schen Systemen erzeugen.
59

Die Modellparameter 𝜔1 und 𝛾1 wer-

den gänzlich durch die Wahl der einlaufenden Welle bestimmt. So-

mit lassen sich auch beliebige, nichtlineare Terme in dem Schwing-

kreis erzeugen, in dem eingekoppelt wird,
60

wobei die einlaufende

Welle im Allgemeinen der Form (10-38) gehorcht. Wie in Abb. 11-5
gezeigt, gibt es stabile stationäre Lösungen, welche dieselben

Eigenschaften aufweisen wie die stationären Zustände des Quan-

tensystems in Abb. 7-6. Daher erfahren auch diese Zustände eine

Selbststabilisierung bei geringen Störungen der Entfernung der

gekoppelten Spulen. Die Anpassung der einlaufenden Welle wirkt

hierbei wie eine Steuerungstechnik. Jedoch werden die stationären

Lösungen recht schnell instabil. Außerdem ist der Wirkungsgrad

der Energieübertragung, den solche Zustände ermöglichen, wie in

Abb. 11-6 gezeigt eher gering. Der Grund hierfür ist, dass die Mo-

dellparameter und die physikalischen Parameter nicht in derselben

Größenordnung liegen, da andernfalls keine stabilen stationären

Zustände gefunden werden konnten.
61

In Abschnitt 11-4 wird kurz diskutiert, wie sich lange Ketten aus

gekoppelten Schwingkreisen bauen lassen, bei denen an einem

Ende ein- und am anderen Ende ausgekoppelt werden. Dieses Sze-

narien sind ähnlich zu den Transportketten, welche in Abschnitt 6-2
diskutiert werden. Jedoch sind die Resonanzfrequenzen der elek-

trischen Schwingkreise notwendigerweise von Null verschieden,

sodass sich durch Verwendung der aus den Quantensystemen be-

kannten Parametern (11-22) bis (11-24) nur im 𝒫𝒯-symmetrischen

Fall stationäre Lösungen ergeben.
62

Jedoch zeigt die Berücksichti-
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63
vgl. Gl. (10-11)

64
vgl. Abb. 11-10

65
vgl. Kapitel 12

66
vgl Abschnitt 7-3

67
vgl. Kapitel 12

gung geringer, intrinsischer Verluste aufgrund des Drahtwiderstan-

des
63

jeder Spule, dass stabile, stationäre Zustände nur noch für

unsymmetrische Parameter möglich sind.
64

Ausblick

Die Beschreibungen der Quantensysteme in dieser Arbeit erfolgten

stets unter dem Aspekt der Einteilchendynamik, wie sie etwa für

Bose–Einstein-Kondensate im Grenzfall vieler Teilchen auftritt.

Obwohl diese Annahme in typischen Experimenten gerechtfertigt

ist, so könnte eine Untersuchung der echten Vielteilchendynamik

dennoch interessant sein. Die mikroskopischen Prozesse, welche

die Ein- und Auskopplung von Teilchen aus einem Quantensystem

beschreiben, sind von Natur aus nicht symmetrisch.
65

Daher lässt

sich etwa 𝒫𝒯-Symmetrie nicht direkt auf Vielteilchensysteme

anwenden. Symmetrisierung könnte hierbei helfen, Zustände in

Vielteilchensystemen mit ausgeglichenem Gewinn und Verlust zu

finden.

Jedoch ist die Anwendung von Symmetrisierung, je nach System,

schwierig und muss rein numerisch erfolgen.
66

Daher könnte man

sich den Umstand zunutze machen, dass symmetrisierte Systeme

bestimmte Strukturen aufweisen, auch wenn diese nur in wenigen

Fällen für Menschen intuitiv erkennbar sind. Das lässt sich etwa an

den in Abb. 6-9 dargestellten, anti-𝒫𝒯-symmetrischen Systemen

sehen, die einen Spezialfall symmetrisierter Systeme darstellen.

Computer hingegen sind in der Lage solche abstrakten Strukturen

und Muster zu erkennen. Durch Methoden des maschinellen Ler-

nens könnte auch die Symmetrisierung komplexer Systeme möglich

sein,
67

was die Konstruktion beliebiger Systeme mit ausgeglichenen

Gewinnen und Verlusten erlauben würde.
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